Тут мы должны учесть некоторое обстоятельство. В ящике шаров желтых 2, а мы должны вытащить четыре. Мы не можем этого сделать. Вероятность 0. Однако, я рассмотрю вероятность всех шаров, может в условии ошибка. Рассмотрим вероятность вытаскивания черного шара. Вероятность - число, равное отношению благоприятных событий к общему их количеству. Итак, вероятность для черных равна. 12\(12+7+2)=12\21. Вероятность вытаскивания желтого шара равна 2\21. Казалось, формула (((Вероятность вытаскивания черного шара)^(кол-во черных))*((Вероятность вытаскивания желтого шара)^(кол-во желтых))=ответ) работает. Но увы.
Тут мы должны учесть некоторое обстоятельство. В ящике шаров желтых 2, а мы должны вытащить четыре. Мы не можем этого сделать. Вероятность 0. Однако, я рассмотрю вероятность всех шаров, может в условии ошибка. Рассмотрим вероятность вытаскивания черного шара. Вероятность - число, равное отношению благоприятных событий к общему их количеству. Итак, вероятность для черных равна. 12\(12+7+2)=12\21. Вероятность вытаскивания желтого шара равна 2\21. Казалось, формула (((Вероятность вытаскивания черного шара)^(кол-во черных))*((Вероятность вытаскивания желтого шара)^(кол-во желтых))=ответ) работает. Но увы.
ответ: 0
Подробнее - на -
Пошаговое объяснение:
ответ:3*9^(x-1/2)-7*6^x + 3*4^(x+1)=0
3*9^x*9^(-1/2)-7*6^x+3*4^x*4=0
9^(-1/2)=1/3, 3*(1/3)=1, 3*4=12
9^x-7*6^x+12*4^x=0,
т.к. 4^x≠0 поделим обе части уравнения на это выражение
(9/4)^x-7*(3/2)^x+12=0
пусть (3/2)^x=y, тогда уравнение примет вид
у^2-7y+12=0, y=3, y=4
(3/2)^x=3 или (3/2)^x=4
x=log(1.5)3 x=log(1.5)4 (1,5 - основание логарифма)
ответ: log(1.5)3 , log(1.5)4
log(1.5)3= log(1.5)(2*1,5)= log(1.5)(1,5)+ log(1.5)2=1+log(1.5)2
1<log(1.5)2<2, 2<1+log(1.5)2<3
log(1.5)3 ∈[2,3]
log(1.5)3<log(1.5)4 < log(1.5)(4 .5)
2<log(1.5)4 < log(1.5)(4 .5)
log(1.5)(4 .5)=log(1.5)(3*1.5)=log(1.5)(1.5)+log(1.5)(3)=1+1+log(1.5)2>3
log(1.5)4 ∉[2,3]