Дан отрезок AB, координаты концов которого: A (3; 1;) и B (8; 4). В симметрии относительно биссектрисы или линии первого квадранта y = x отрезок AB представлен отрезком CD. Определите координаты конечных точек отрезка CD. Нарисуйте соответствующий рисунок.
1. Всего в магазин пришло 35 покупателей.
Известно, что 10 человек из них не купили ни одного диска.
Посчитаем количество посетителей, которые купили хотя бы один диск.
35 - 10 = 25 человек.
2. Из этого числа 20 человек приобрели диск певицы Максим.
Найдем количество людей, которые не купили этот диск.
25 - 20 = 5 человек.
Эти люди приобрели только один диск Земфиры.
3. По условию 11 человек купили диск Земфиры.
Вычислим количество людей, купивших 2 диска.
11 - 5 = 6 человек.
ответ: 6 человек купили диски и Максим, и Земфиры
Я решил от Вас не отставать и тоже решил несколько раз.)))
4)а) найдем координаты векторов →АD, →АС, →АВ. для чего от координат конца вектора отнимем координаты начала. получим
→АD(2+3; -1+3; 0-4), →АD(1;2;4);→АС(4;3;-8); →АВ(3;6;0)
Найдем смешанное произведение →АВ*(→АСх→АD), для чего найдем определитель третьего порядка
3 6 0
4 3 -8=
1 2 -4
=-36+0-48-(0-96-48)=60
Найдем модуль этого произведения и умножим на 1/6, получим 60/6=10
ответ 10
5) составим уравнение плоскости АВС, как плоскости. проходящей через три точки. для чего определитель приравняем к нулю.
Определитель
х-х₁ у-у₁ z-z₁
х₂-х₁ у₂-у₁ z₂-z₁ =0
х₃-х₁ у₃-у ₁ z₃-z₁
В нашем случае
х+4 у+1 z
4 0 -3
4 4 -4=
(х+4)*(0+12)-(у+1)*(-16+12)+z* (16-0)=0
12х+4у+16z+52=0
3х+у+4z+13=0
Теперь подставим точки в это уравнение и проверим. принадлежат ли они этой плоскости.
3х+у+4z+13=0
3*(-4)-1+4*0+13=0⇒А(-4;-1;0) принадлежит плоскости АВС
3*0-1-3*4+13=0⇒В(-0;-1;-3) принадлежит плоскости АВС
3*0+3-4*4+13=0⇒С(-0;3;-4) принадлежит плоскости АВС
4б)
Уравнение плоскости ВСD, на которую опускаем высоту из вершины А, найдем аналогично 5)
х-0 у-3 z-4
1 -3 -8 =0
-2 -4 -4
x*(12-32)-(e-3)*(-4-16)+(z-4)*()-4-6=0
-20x+20y-10z-20=0
-2x+2y-z-2=0
Высоту найдем как расстояние от точки А(х₀;у₀;z₀) до плоскости ВСD
IA*x₀+B*y₀+C*z₀+DI/√( А²+В²+С²)=I-2*(-3)-2*3-1*4-2I/√( 4+4+1²=6/√9=6/3=2