Четверо ребят стояли по углам прямоугольного бассейна с размерами 10 м × 25 м, а их тренер стоял на краю бассейна (на одной из его сторон). Когда тренер позвал ребят, трое из них побежали к нему кратчайшим путем. Сумма расстояний, которые они пробежали, равна 50 м. Чему равно кратчайшее расстояние, которое должен пройти тренер до четвертого ребенка?
Условие
На столе в ряд лежат четыре монеты. Среди них обязательно есть как настоящие, так и фальшивые (которые легче настоящих). Известно, что любая настоящая монета лежит левее любой фальшивой. Как за одно взвешивание на чашечных весах без гирь определить тип каждой монеты, лежащей на столе?
Решение
Пронумеруем монеты слева направо. Так как среди монет есть обязательно настоящая и фальшивая, то первая монета настоящая, а четвертая– фальшивая. Необходимо определить вид второй и третьей монет. Настоящие монеты лежат левее фальшивых, значит возможны следующие случаи: 1)настоящая, настоящая, настоящая, фальшивая; 2)настоящая, настоящая, фальшивая, фальшивая; 3)настоящая, фальшивая, фальшивая, фальшивая.
Положим на левую чашу весов первую и четвертую монеты, а на правую чашу весов– вторую и третью монеты.
1) Если правая чаша перевесила, то на ней лежат только настоящие монеты, т.е. вторая и третья монеты– настоящие.
2) Если весы находятся в равновесии, то на каждой чаше лежат настоящая и фальшивая монеты, т.е. вторая монета– настоящая, а третья– фальшивая.
3) Если левая чаша перевесила, то на правой чаше лежат только фальшивые монеты, т.е. вторая и третья монеты– фальшивые.
Пошаговое объяснение:
f'(x)=(1,5x²-30x+48lnx+4)'=3x-30+(48/x)=0
3x²-30x+48=0 |:3
x²-10x+16=0
D=(-10)²-4*16=100-64=36
x=(10-6)/2=2 x=(10+6)/2=8
Нашли критические точки.
Отложим на числовой прямой найденные критические точки и определим знак производной на интервалах
+ - +
(2)(8)
При переходе через точку х=2 производная меняет знак с "+" на "-" следовательно в этой точке функция достигает максимума, а при переходе через точку х=8 с "-" на "+" значит в этой точке функция достигает минимума.