Через вершини паралелограма АВСD, що лежить в одній з двох паралельних площин, проведено паралельні прямі, які перетинають іншу площину в точках А1, В1, С1, D1. Доведіть, що чотирикутник А1В1С1D1 також паралелограм.
Вравнобедренном треугольнике медианы, проведенные к боковым сторонам, равны. доказательство: пусть abc - равнобедренный треугольник (ac = bc), ak и bl - его медианы. тогда треугольники akb и alb равны по второму признаку равенства треугольников. у них сторона ab общая, стороны al и bk равны как половины боковых сторон равнобедренного треугольника, а углы lab и kba равны как углы при основании равнобедренного треугольника. так как треугольники равны, их стороны ak и lb равны. но ak и lb - медианы равнобедренного треугольника, проведённые к его боковым сторонам.
НОД (24 и 60) = 2 * 2 * 3 = 12 - наибольший общий делитель
24/60 (24:12)/(60:12) = 2/5
45 = 3 * 3 * 5 105 = 3 * 5 * 7
НОД (45 и 105) = 3 * 5 = 15 - наибольший общий делитель
45/105 = (45:15)/(105:15) = 3/7
39 = 3 * 13 130 = 2 * 5 * 13
НОД (13 и 130) = 13 - наибольший общий делитель
39/130 = (39:13)/(130:13) = 3/10
64 = 2 * 2 * 2 * 2 * 2 * 2 144 = 2 * 2 * 2 * 2 * 3 * 3
НОД (64 и 144) = 2 * 2 * 2 * 2 = 16 - наибольший общий делитель
64/144 = (64:16)/(144:16) = 4/9