По чертежу (рис. 1) мы замечаем, что AM || CH, но для полного убеждения, составим функции прямых по формуле y = kx + m и решим систему уравнений.
Возьмём две любые точки (желательно брать такие точки, если они есть, чтобы аргумент (х) был равен 0; тогда пропадёт коэффицент k и найти m будет легче) для AM, например, (0; 4) и (-2; 3). Составляем таблицу:
Теперь данные из таблицы подставляем к линейной функции вида
y = kx + m:
4 = k0 + m
4 = m ⇒ y = kx + 4
Теперь, находим коэффицент k:
, на 0 делить нельзя, поэтому берем другие точки
Получаем линейную функцию y = 0,5x + 4
Аналогично действуем для второй прямой
1) Таблица:
2) Подставляем значения в y = kx + m:
-1 = k0 + m
-1 = m ⇒ y = kx - 1
3) Находим k:
Так как прямые параллельны, то k будет одинаковый (можно проверить):
⇒ y = 0,5x - 1
Наконец, составляем систему уравнений
Как видим, x и y обратились в 0, а значит, система не имеет решений и прямые не имеют общих точек.
По чертежу (рис. 1) мы замечаем, что AM || CH, но для полного убеждения, составим функции прямых по формуле y = kx + m и решим систему уравнений.
Возьмём две любые точки (желательно брать такие точки, если они есть, чтобы аргумент (х) был равен 0; тогда пропадёт коэффицент k и найти m будет легче) для AM, например, (0; 4) и (-2; 3). Составляем таблицу:
Теперь данные из таблицы подставляем к линейной функции вида
y = kx + m:
4 = k0 + m
4 = m ⇒ y = kx + 4
Теперь, находим коэффицент k:
, на 0 делить нельзя, поэтому берем другие точки
Получаем линейную функцию y = 0,5x + 4
Аналогично действуем для второй прямой
1) Таблица:
2) Подставляем значения в y = kx + m:
-1 = k0 + m
-1 = m ⇒ y = kx - 1
3) Находим k:
Так как прямые параллельны, то k будет одинаковый (можно проверить):
⇒ y = 0,5x - 1
Наконец, составляем систему уравнений
Как видим, x и y обратились в 0, а значит, система не имеет решений и прямые не имеют общих точек.
1)
((-3c)×2,5)×(-4d) = 210
(-7,5с) × (-4d) = 210
30сd = 210
Подставляем cd=7
30×7 = 210
210 = 210 - равенство верно
2)
1,5c×((-8d)×7) = -588
1,5с × (-56d) = -588
-84cd = -588
Подставляем cd=7
-84×7 = -588
-588 = -588 - равенство верно
3)
(c×(-5))×0,4d) = -14
(-5с)×0,4d = -14
-2сd = -14
Подставляем cd=7
-2×7 = -14
-14 = -14 - равенство верно
4)
((-0,3)×(-2))×(10d) = 42
0,6 × 10d = 42
6d = 42
d = 42/6 = 7
Если в примере пропущена с, то получаем
((-0,3с)×(-2))×(10d) = 42
0,6с × 10d = 42
6сd = 42
Подставляем cd=7
6×7 = 42 - равенство верно
Пошаговое объяснение: