ціна товару становила 800 грн . спочатку його ціну підвищили на 10%, а потім знизили на 20%. якою стала ціна товару пвсля цих змін? на скільки відсотків щмінилася початкова ціна
Построение ромба по двум диагоналям. 1. На прямой а отложим отрезок АС, равный данной диагонали d₁. 2. Проведем серединный перпендикуляр к отрезку АС. Для этого построим две окружности одинакового произвольного радиуса (большего половины АС) с центрами в точках А и С. Через точки пересечения окружностей проведем прямую b. b∩a = O. O - середина АС. 3. Точно так же разделим данную диагональ d₂ пополам. На прямой b от точки О отложим отрезки ОВ и OD, равные половине диагонали d₂. ABCD - искомый ромб.
Построение ромба по стороне и углу. 1. На прямой а отложим отрезок KN, равный данному отрезку АВ. 2. Построим ∠TKN = ∠PNN' = ∠CDE. Для этого проведем дугу произвольного одинакового радиуса с центрами в точках D, К и N. Точки пересечения дуг с прямой а обозначим K' и N' (эти точки находятся по разные стороны от точки N). Измерим расстояние C'E' и таким радиусом проведем окружности с центрами в точках K' и N'. Через точки пересечения этих окружностей с ранее построенными дугами проведем лучи КТ и NP. 3. На лучах КТ и NP отложим отрезки KL и NM соответственно, равные данному отрезку АВ. 4. Соединим точки L и М. KLMN - искомый ромб.
Доказательство: KL║NM так как соответственные углы LKK' и MNN' равны по построению. KL = NM по построению, значит KLMN - параллелограмм. Смежные стороны его равны, значит это ромб.
Параллелограмм делится диагональю на два равных треугольника. S△ABD = S△BCD = 24/2 = 12
S△BKP = S△BCD - S PKCD = 12-10 = 2
Треугольники, лежащие на боковых сторонах трапеции при пересечении диагоналей, равновеликие. S△ABP = S△KDP = x
S△BKD = S△KDP + S△BKP = x+2
Если два треугольника имеют общий угол, то их площади относятся как произведения сторон, заключающих этот угол. △ABP и △ABD: BP·AB / BD·AB = x/12 <=> BP/BD = x/12
1. На прямой а отложим отрезок АС, равный данной диагонали d₁.
2. Проведем серединный перпендикуляр к отрезку АС. Для этого построим две окружности одинакового произвольного радиуса (большего половины АС) с центрами в точках А и С. Через точки пересечения окружностей проведем прямую b.
b∩a = O.
O - середина АС.
3. Точно так же разделим данную диагональ d₂ пополам. На прямой b от точки О отложим отрезки ОВ и OD, равные половине диагонали d₂.
ABCD - искомый ромб.
Построение ромба по стороне и углу.
1. На прямой а отложим отрезок KN, равный данному отрезку АВ.
2. Построим ∠TKN = ∠PNN' = ∠CDE. Для этого проведем дугу произвольного одинакового радиуса с центрами в точках D, К и N.
Точки пересечения дуг с прямой а обозначим K' и N' (эти точки находятся по разные стороны от точки N).
Измерим расстояние C'E' и таким радиусом проведем окружности с центрами в точках K' и N'. Через точки пересечения этих окружностей с ранее построенными дугами проведем лучи КТ и NP.
3. На лучах КТ и NP отложим отрезки KL и NM соответственно, равные данному отрезку АВ.
4. Соединим точки L и М.
KLMN - искомый ромб.
Доказательство:
KL║NM так как соответственные углы LKK' и MNN' равны по построению.
KL = NM по построению, значит KLMN - параллелограмм.
Смежные стороны его равны, значит это ромб.
S△ABD = S△BCD = 24/2 = 12
S△BKP = S△BCD - S PKCD = 12-10 = 2
Треугольники, лежащие на боковых сторонах трапеции при пересечении диагоналей, равновеликие.
S△ABP = S△KDP = x
S△BKD = S△KDP + S△BKP = x+2
Если два треугольника имеют общий угол, то их площади относятся как произведения сторон, заключающих этот угол.
△ABP и △ABD:
BP·AB / BD·AB = x/12 <=> BP/BD = x/12
△BKP и △BKD:
BP·BK / BD·BK = 2/(x+2) <=> BP/BD = 2/(x+2)
x/12 = 2/(x+2) <=> x(x+2) = 24 <=> x^2 +2x -24 = 0
x(1,2) = -1±√(1+24) = -1±5
x1= -6 (x>0)
x2= 4
S△APD = S△ABD - S△ABP = 12-4 = 8