Буду ! 1) сколько диагоналей можно провести из одной вершины: а) пятиугольника б) девьтикутника в) н-уголка, где н менее 3? 2) сколько всего диагоналей можно провести: а) пятиугольника б) девятиугольником в) н-уголка, где н менше ніж 3?
Диагональ в многоугольнике (многограннике) — отрезок, соединяющий любые две не смежные вершины, то есть, вершины, не принадлежащие одной стороне многоугольника (одному ребру многогранника). У многогранников различают диагонали граней (рассматриваемых как плоские многоугольники) и пространственные диагонали, выходящие за пределы граней. У многогранников, имеющих треугольные грани есть только пространственные диагонали. Количество диагоналей N у многоугольника легко вычислить по формуле: N = n·(n – 3)/2, где n — число вершин многоугольника. По этой формуле нетрудно найти, что:у треугольника — 0 диагоналей у прямоугольника — 2 диагоналиу пятиугольника — 5 диагоналейу шестиугольника — 9 диагоналейу восьмиугольника — 20 диагоналейу 12-угольника — 54 диагоналиу 24-угольника — 252 диагонали
У многогранников различают диагонали граней (рассматриваемых как плоские многоугольники) и пространственные диагонали, выходящие за пределы граней. У многогранников, имеющих треугольные грани есть только пространственные диагонали.
Количество диагоналей N у многоугольника легко вычислить по формуле: N = n·(n – 3)/2, где n — число вершин многоугольника.
По этой формуле нетрудно найти, что:у треугольника — 0 диагоналей у прямоугольника — 2 диагоналиу пятиугольника — 5 диагоналейу шестиугольника — 9 диагоналейу восьмиугольника — 20 диагоналейу 12-угольника — 54 диагоналиу 24-угольника — 252 диагонали