А) пусть AK : KB = 1 : n AK = x, BL = y, тк AB = CD и BC = AD имеем: cm = ak = x kb = md = nx nd = bl = y lc = an = ny ΔAKN = ΔLME по 1 признаку (ak = cm, an = lc, ∠kan = ∠lcm) => kn = lm аналогично получаем kl = nm Таким образом, в 4-хугольнике klmn противоположные стороны равны => этот 4-хугольник - параллелограмм пусть km ∩ ln = O Δaon = Δloc по 2 признаку (an = lc = ny, ∠oan = ∠ocl и ∠olc = ∠ona как внутренние накрест лежащие при AD || BC) => ∠aon = ∠loc => ∠aoc = 180 => с лежит на прямой ao из равенства треугольников также следует, что ao = oc => точка o - точка пересечения диагоналей парал-ма abcd, что и требовалось доказать б) пусть ak = cm = 2x kb = md = 5x bl = nd = 2y an = lc = 5y заметим, что sin(bad) = sin(180 - bad) = sin(abc) = sinA Sabcd = 7x * 7y * sinA = 49xysinA Sklmn = Sabcd - 2(Sakn + Sbkl) = 49xysinA - 2(10xysinA / 2 + 10xysinA / 2) = 49xysinA - 20xysinA = 29xysinA Sklmn / Sabcd = 29xysinA / (49xysinA) = 29 / 49 ответ: а) доказано; б) 29 / 49.
AK = x, BL = y,
тк AB = CD и BC = AD
имеем:
cm = ak = x
kb = md = nx
nd = bl = y
lc = an = ny
ΔAKN = ΔLME по 1 признаку (ak = cm, an = lc, ∠kan = ∠lcm)
=> kn = lm
аналогично получаем
kl = nm
Таким образом, в 4-хугольнике klmn противоположные стороны равны => этот 4-хугольник - параллелограмм
пусть km ∩ ln = O
Δaon = Δloc по 2 признаку (an = lc = ny, ∠oan = ∠ocl и ∠olc = ∠ona как внутренние накрест лежащие при AD || BC) => ∠aon = ∠loc => ∠aoc = 180 => с лежит на прямой ao
из равенства треугольников также следует, что ao = oc => точка o - точка пересечения диагоналей парал-ма abcd, что и требовалось доказать
б) пусть ak = cm = 2x
kb = md = 5x
bl = nd = 2y
an = lc = 5y
заметим, что sin(bad) = sin(180 - bad) = sin(abc) = sinA
Sabcd = 7x * 7y * sinA = 49xysinA
Sklmn = Sabcd - 2(Sakn + Sbkl) = 49xysinA - 2(10xysinA / 2 + 10xysinA / 2) = 49xysinA - 20xysinA = 29xysinA
Sklmn / Sabcd = 29xysinA / (49xysinA) = 29 / 49
ответ: а) доказано; б) 29 / 49.
1) 1/15 и 1/5 * 3 = 3/15; 1/15 & 3/15
2) 2/3 * 4 = 8/12 и 3/4 * 3 = 9/12; 8/12 & 9/12 ( знаменатели взаимно-простые, поэтому просто перемножили )
3) 1/2 * 7 = 7/14 и 3/7 * 2 = 6/14; 7/14 & 6/14 ( знаменатели взаимно-простые, поэтому просто перемножили )
4) 3/5 * 6 = 18/30 и 5/6 * 5 = 25/30; 18/30 & 25/30 ( знаменатели взаимно-простые, поэтому просто перемножили )
5) 4/15 * 11 = 44/165 и 7/11 * 15 = 105/165; 44/165 & 105/165 ( эти знаменатели тоже взаимно-простые, поэтому просто перемножили )
Пошаговое объяснение:
Я смог