Боковые стороны равнобедренной трапеции продолжены до пересечения в точке М. Основания трапеции равны 3,8 см и 11,4 см, боковая сторона равна 12, 4 см. Найти расстояние от точки M до конца большего основания.
Пусть х - число на которую уменьшили ширину, тогда 3х - число на которое уменьшили длину. Стороны прямоугольника стали: ширина - (3-х) м , длина - (4-3х) м. Зная, что ширина стала в 2 раза больше длины, составим уравнение: (3-х)/(4-3х) =2 2 *(4-3х) = 3-х 8 -6х=3-х -6х+х= 3-8 -5х=-5 х=(-5)/(-5) х= 1 м - число, на которое уменьшили ширину 1*3= 3 м - число , на которое уменьшили длину Проверим: (3-1)/ (4-3) = 2/1 = 2 раза больше ширина, чем длина
ответ: на 1 м уменьшили ширину, на 3 метра уменьшили длину.
ширина - (3-х) м , длина - (4-3х) м.
Зная, что ширина стала в 2 раза больше длины, составим уравнение:
(3-х)/(4-3х) =2
2 *(4-3х) = 3-х
8 -6х=3-х
-6х+х= 3-8
-5х=-5
х=(-5)/(-5)
х= 1 м - число, на которое уменьшили ширину
1*3= 3 м - число , на которое уменьшили длину
Проверим:
(3-1)/ (4-3) = 2/1 = 2 раза больше ширина, чем длина
ответ: на 1 м уменьшили ширину, на 3 метра уменьшили длину.
Пошаговое объяснение:
НОД (18; 21) = 3.
Как найти наибольший общий делитель для 18 и 21
Разложим на множители 18
18 = 2 • 3 • 3
Разложим на множители 21
21 = 3 • 7
Выберем одинаковые множители в обоих числах.
3
Находим произведение одинаковых множителей и записываем ответ
НОД (18; 21) = 3 = 3
НОК (Наименьшее общее кратное) 18 и 21
Наименьшим общим кратным (НОК) 18 и 21 называется наименьшее натуральное число, которое само делится нацело на каждое из этих чисел (18 и 21).
НОК (18, 21) = 126
Как найти наименьшее общее кратное для 18 и 21
Разложим на множители 18
18 = 2 • 3 • 3
Разложим на множители 21
21 = 3 • 7
Выберем в разложении меньшего числа (18) множители, которые не вошли в разложение
2 , 3
Добавим эти множители в разложение бóльшего числа
3 , 7 , 2 , 3
Полученное произведение запишем в ответ.
НОК (18, 21) = 3 • 7 • 2 • 3 = 126