Точки К и М - середины его боковых сторон. Следовательно, КМ, как средняя линия, параллельна ВС.
Аналогично КР - средняя линия ∆ АВД, и РМ - средняя линия ∆ АСД.
Пересекающиеся КМ и КР лежат в одной плоскости и соответственно параллельны пересекающимся ВС и ДС, лежащим в другой плоскости.
Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым, лежащим в другой плоскости, то такие плоскости параллельны ( теорема).
1 и 3 задачи были самыми легкими в 6-м и 5-м классах. Их решили по 5 учеников. Значит в 4-м самой легкой задачей должна быть 2-ая или 4-ая, но другая задача должна набрать больше решений в суме, ее должны решить не менее 6 учеников. Если самая легкая 4-я, то ее должны решить не менее 5 четвероклассника, тогда она будет самой легкой и в 4-м классе — не подходит по условию. Чтобы самой легкой на олимпиаде была вторая, ее должны решить не менее 3-х четвероклассников, а самой легкой в 4-м классе будет 4-я — 4 решивших.
Рассмотрим треугольник АВС.
Точки К и М - середины его боковых сторон. Следовательно, КМ, как средняя линия, параллельна ВС.
Аналогично КР - средняя линия ∆ АВД, и РМ - средняя линия ∆ АСД.
Пересекающиеся КМ и КР лежат в одной плоскости и соответственно параллельны пересекающимся ВС и ДС, лежащим в другой плоскости.
Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым, лежащим в другой плоскости, то такие плоскости параллельны ( теорема).
⇒ плоскости КРМ и ВСД параллельны. ч.т.д
Объяснение:
1 и 3 задачи были самыми легкими в 6-м и 5-м классах. Их решили по 5 учеников. Значит в 4-м самой легкой задачей должна быть 2-ая или 4-ая, но другая задача должна набрать больше решений в суме, ее должны решить не менее 6 учеников.
Если самая легкая 4-я, то ее должны решить не менее 5 четвероклассника, тогда она будет самой легкой и в 4-м классе — не подходит по условию. Чтобы самой легкой на олимпиаде была вторая, ее должны решить не менее 3-х четвероклассников, а самой легкой в 4-м классе будет 4-я — 4 решивших.