№1. а) АВО и СDO равны (они накрест лежащие при параллельных прямых АВ и CD и секущей BD ), аналогично относительно углов BAO и DCO (накр. леж. при параллельных прямых AB и CD и секущей АС) . Таким образом, треугольники АОВ и СОD подобны (по двум углам) , а у подобных треугольников соответствующие стороны пропорциональны. Значит АО: ОС=ВО: OD б) итак, у подобных треугольников АОВ и СОD (а их подобие доказано под "а") соответствующие стороны пропорциональны. ТО есть ОD:ОВ=СD:АВ отсюда АВ= (ОВ*СD) / ОD = (9*25)/15 = 15 (см)
× 18 × 32 × 70 ×3600 ×24 × 67 × 30
2112 970 =21630 1128 3052 1463 =15480
264 1455 564 1526 1254
=4752 =15526 =676800 =18312 =14003
234
× 1800
1872
234
=321200
б) итак, у подобных треугольников АОВ и СОD (а их подобие доказано под "а") соответствующие стороны пропорциональны. ТО есть ОD:ОВ=СD:АВ отсюда АВ= (ОВ*СD) / ОD = (9*25)/15 = 15 (см)