Автобус и грузовая машина, скорость которой на 16 км/ч больше скорости автобуса, выехали одновременно навстречу друг другу из двух городов, расстояние между которыми — 730 км. Найди скорости автобуса и грузовой машины, если известно, что они встретились через 5 ч. после выезда.
ответ:
скорость автобуса —
км/ч;
скорость грузовой машины —
км/ч.
У двух братьев поровну орехов. Если старший брат отдаст младшему 18 орехов, то орехов у него станет в 7 раз(-а) меньше, чем у младшего. Сколько орехов у каждого брата было первоначально?
ответ: у каждого брата орехов было первоначально по
шт.
Пошаговое объяснение:
Расстояние между городами 730 км.
Направление движения: на встречу друг другу.
Выехали из двух городов одновременно.
Скорость грузового автомобиля на 16 км/ч больше автобуса.
Время движения 5 ч.
Определить скорость грузового автомобиля и автобуса.
Расстояние, на которое сближаются грузовой автомобиль, и автобус за единицу времени, называют скоростью сближения vсб.
В случае движения грузового автомобиля и автобуса навстречу друг другу, скоростью сближения равно: vсб = v1 + v2
Если начальная расстояние между городами равна S километров и грузовая машина и автобус встретились через tвстр ч, то S = vсбл * tвстр = (v1 + v2) * tвстр, км.
Пусть скорость автобуса равна х км/ч, тогда скорость грузового автомобиля будет (х + 16) км/ч.
Согласно условию задачи, нам известно, что расстояние между городами S = 730 км и tвстр = 5 ч, подставим значения в формулу:
(х + (х + 16)) * 5 = 730
(2х + 16) * 5 = 730
10х + 80 = 730
10х = 730 – 80
10х = 650
х = 650 : 10
х = 65
Скорость автобуса равно 65 км/ч.
Скорость грузового автомобиля равно 65 + 16 = 81 км/ч.
ответ: скорость автобуса — 65 км/ч; скорость грузовой машины — 81 км/ч.