Определение: Призмой называется многогранник, у которого две грани (основания) лежат в параллельных плоскостях, а все ребра вне этих граней параллельны между собой.
Прямой призмой называется призма, у которой боковое ребро перпендикулярно плоскости основания.
Пусть данная призма АВСDA₁B₁C₁D₁ Грани АВСD и A₁B₁C₁D₁ - трапеции, остальные грани призмы - перпендикулярные к плоскости оснований прямоугольники. Объем призмы равен произведению площади основания призмы на её высоту. По условию S (АА₁D₁D)=12 см² и S (BB₁C₁C)=8 см² Расстояние между параллельными боковыми гранями дано СН=5 м. Думаю, это ошибка. Решение дается для СН = 5 см Площадь трапеции, основания призмы, и длина бокового ребра , т.е. высоты призмы -неизвестны. Для решения задачи применим дополнительное построение. Достроим призму до параллелепипеда АКМDD₁А₁К₁М₁ Из В, С, В₁ и С₁ проведем перпендикуляры к большей боковой грани. Получился прямоугольный параллелепипед с площадью грани В1С1СВ = 8 см² и высотой к ней СТ=5 см Его объем 8*5=40 см³ Объем параллелепипеда АКМDD₁А₁К₁М₁ равен площади большей грани на СТ=12*5=60 см³ Диагональные сечения "пристроенных" сбоку от меньшего параллелепипеда призм делят их пополам. Половина разности объемов этих призм является лишней, (см. рисунок). Пусть объем большего параллелепипеда равен V₁, объём меньшего V₂ , объем данной по условию призмы -V. Тогда V= V₂+(V₁ -V₂):2 V (ACDD₁ A₁ B₁ C₁ )=40+(60-40):2=50 см³ ----- Для расстояния между параллельными боковыми гранями равном 5 м=500 см объём будет в 100 раз больше и будет равен V=5000 см³ или 0,005 м³----- Для расстояния 5 м=500 см объём будет в 100 раз больше и будет равен 5000 см³ или 0,005 м³
Призмой называется многогранник, у которого две грани (основания) лежат в параллельных плоскостях, а все ребра вне этих граней параллельны между собой.
Прямой призмой называется призма, у которой боковое ребро перпендикулярно плоскости основания.
Пусть данная призма АВСDA₁B₁C₁D₁
Грани АВСD и A₁B₁C₁D₁ - трапеции, остальные грани призмы - перпендикулярные к плоскости оснований прямоугольники.
Объем призмы равен произведению площади основания призмы на её высоту. По условию S (АА₁D₁D)=12 см² и S (BB₁C₁C)=8 см²
Расстояние между параллельными боковыми гранями дано СН=5 м. Думаю, это ошибка.
Решение дается для СН = 5 см Площадь трапеции, основания призмы, и длина бокового ребра , т.е. высоты призмы -неизвестны. Для решения задачи применим дополнительное построение. Достроим призму до параллелепипеда АКМDD₁А₁К₁М₁
Из В, С, В₁ и С₁ проведем перпендикуляры к большей боковой грани. Получился прямоугольный параллелепипед с площадью грани В1С1СВ = 8 см² и высотой к ней СТ=5 см Его объем 8*5=40 см³ Объем параллелепипеда АКМDD₁А₁К₁М₁ равен площади большей грани на СТ=12*5=60 см³
Диагональные сечения "пристроенных" сбоку от меньшего параллелепипеда призм делят их пополам. Половина разности объемов этих призм является лишней, (см. рисунок). Пусть объем большего параллелепипеда равен V₁, объём меньшего V₂ , объем данной по условию призмы -V. Тогда V= V₂+(V₁ -V₂):2 V (ACDD₁ A₁ B₁ C₁ )=40+(60-40):2=50 см³
-----
Для расстояния между параллельными боковыми гранями равном 5 м=500 см объём будет в 100 раз больше и будет равен
V=5000 см³ или 0,005 м³-----
Для расстояния 5 м=500 см объём будет в 100 раз больше и будет равен
5000 см³ или 0,005 м³
х=-2+2/2=0 у=4+8/2=6 О(0;6)
б) АВ=√ (-6+2)2+(12-4)2=√16+64=√80=4√5
ВС=√(2+6)2+(8-12)2=√64+16=√80=4√5
в) середина диагонали ВД точка О(0;6) х2=2*0-(-6)=6 у2=2*6-12=0
точка Д(6;0)
г) диагонали АС А(-2:4) С(2:8)
формула прямой: (х-х1)(у2-у1) =(у-у1)(х2-х1)
АС: (х+2)(8-4)=(у-4)(2+2) 4х+8=4у-16 4х-4у+24=0 разделим все на (-4) получим у-х-6=0
ВД: B(-6;12) Д(6;0) (х+6)(0-12)=(у-12)(6+6) -12х-72=12у-144
-12х-12у+72=0 разделим все на (-12) у+х-6=0,