А) Через А обозначим множество всех прямоугольников с периметром, равным 1; через В – множество всех точек плоскости. Каждому прямоугольнику из А ставят в соответствие точку пересечения его диагоналей. Является ли это соответствие взаимно однозначным? б) Изобразить на координатной плоскости заданное множество:
{(x,y) R2: (x2-1)(y+2)=0}
х:121=3647+1265
х:121=4912
х=4912×121
х=594352
проверка
594352:121-1265=3647
4912-1265=3647
3647=3647
787×х-7286=20259
787×х=20259+7286
787×х=27545
х=27545:787
х=35 проверка
787×35-7286=20259
20259=20259
120+х×3=375
3х=375-120
3х=255
х=255:3
х=85 проверка
120+85×3=375
120+255=375
375=375
24000:(х-12)=80
24000=80×(х-12)
24000=80х-960
80х=24000+960
80х=24960
х=24960:80
х=312 проверка
24000:(312-12)=80
24000:300 =80
80=80
х:26+1254=2610
х:26=2610-1254
х:26=1356
х=1356×26
х=35256 проверка
35256:26+1254=2610
1356 +1254=2610
2610=2610
Если будешь использовать решение, предложенное Троллем, то вот формулы:
S - площадь треугольника со сторонами a, b, с
p - его полупериметр, т.е. (a+b+c)/2
r - радиус вписанной в него окружности
sqrt(z) - функция квадратного корня из величины z
S=(r/2)*(a+b+c)
S=sqrt(p*(p-a)*(p-b)*(p-c)) //ф-ла Герона
Подставив значения, получаем:
площадь треугольника (основания пирамиды) равна 336 см, радиус вписанной окружности равен 8 см
высота пирамиды из этого тоже равна 8 см. //по т. Пифагора
x - расстояния от основания высоты пирамиды до плоскостей боковых граней равны между собой, и выражаются в данном случае так:
x = sqrt(8^2-((8*sqrt(2))/2)^2) = sqrt(32) //по т. Пифагора
x = 4*sqrt(2) - "четыре корня из двух"
Пошаговое объяснение: