В решении.
Пошаговое объяснение:
1) Басейн при одночасному включенні трьох труб може наповнитися за
4 год. Через одну першу трубу - за 10 год, а через одну другу – за 15 год.
За який час може наповнитися басейн через одну третю трубу?
1 - объём всего бассейна.
1/10 - часть бассейна, заполняемая первой трубой за час.
1/15 - часть бассейна, заполняемая второй трубой за час.
1/х - часть бассейна, заполняемая третьей трубой за час (время неизвестно).
По условию задачи уравнение:
1/10 + 1/15 + 1/х = 1/4
Общий знаменатель 60х, надписываем над числителями дополнительные множители, избавляемся от дроби:
6х*1 + 4х*1 + 60 = 15х*1
6х+4х+60=15х
10х-15х= -60
-5х = -60
х= -60/-5
х=12 (часов) - время заполнения бассейна одной третьей трубой.
2) Двом екскаваторам дано завдання вирити котлован. Працюючи
разом, вони можуть виконати це завдання за 20 днів. Але спочатку
24 дні працював один екскаватор, а потім роботу закінчив інший. За
який час було виконано завдання, якщо екскаватор, що працював
першим, може один вирити весь котлован за 36 днів?
1 - объём всего котлована.
1)Сначала нужно найти производительность второго экскаватора (часть котлована, которую он может выкопать за день):
1/36 - часть котлована, которую может выкопать первый экскаватор за день (его производительность по условию задачи).
1/х - часть котлована, которую может выкопать второй экскаватор за день (его производительность по условию задачи).
(1/36 + 1/х) - общая производительность двух экскаваторов.
По условию вместе могут выкопать котлован за 20 дней, уравнение:
(1/36 + 1/х) * 20 = 1
20/36 + 20/х = 1
Общий знаменатель 36х, надписываем над числителями дополнительные множители, избавляемся от дроби:
х*20 +36*20 = 36х*1
20х+720=36х
20х-36х= -720
-16х= -720
х= -720/-16
х=45 (дней) - за столько дней может выкопать котлован второй экскаватор.
А его производительность 1/45 - часть котлована, которую может выкопать второй экскаватор за день.
2)Найти общее количество дней, за которое был выкопан котлован.
По условию задачи сначала 24 дня работал первый экскаватор.
1/36 * 24 = 24/36 = 2/3 (котлована выкопал первый экскаватор).
1 - 2/3 = 1/3 (котлована докапывал второй экскаватор).
1/3 : 1/45 = 15 (дней) - работал второй экскаватор.
24 + 15 = 39 (дней) - общее количество дней, за которое два экскаватора выкопали котлован, работая по очереди.
Проверка:
1/36 * 24 + 1/45 * 15 = 2/3 + 1/3 = 1, верно.
Стороны треугольника лежат на прямых x+5у–7=0, 3x–2y–4=0, 7x+y+19=0. Вычислить его площадь S.
Находим координаты вершин треугольника как точки пересечения заданных прямых.
3x–2y–4=0, 3x–2y–4=0,
7x+y+19=0 |x2 = 14x+2y+38=0
17x + 34 = 0, x = -34/17 = -2.
y = (3/2)*x - (4/2) = y = (3/2)*(-2) - (4/2) = -3 - 2 = -5.
Точка А(-2; -5).
x+5у–7=0, |x-7 = -7x-35y+49=0
7x+y+19=0, 7x+y+19=0
-34y+68 = 0, y = -68/-34 = 2.
x = 7 - 5y = 7 - 5*2 = -3.
Точка В(-3; 2).
x+5у–7=0, |x(-3) = -3x-15y+21 = 0
3x–2y–4=0 3x–2y–4 = 0
-17y+17 = 0, y = -17/-17 = 1.
x = 7 - 5y = 7 - 5*1 = 2.
Точка С(2; 1).
Найдем вектора по координатам точек:
AB = {Bx - Ax; By - Ay; Bz - Az} = {-3 - (-2); 2 - (-5); 0 - 0} = {-1; 7; 0}
AC = {Cx - Ax; Cy - Ay; Cz - Az} = {2 - (-2); 1 - (-5); 0 - 0} = {4; 6; 0}
S = (1/2) |AB × AC|
Найдем векторное произведение векторов:
c = AB × AC
AB × AC =
i j k
ABx ABy ABz
ACx ACy ACz
=
-1 7 0
4 6 0
= i (7·0 - 0·6) - j ((-1)·0 - 0·4) + k ((-1)·6 - 7·4) =
= i (0 - 0) - j (0 - 0) + k (-6 - 28) = {0; 0; -34}
Найдем модуль вектора:
|c| = √(cx^2 + cy^2 + cz^2) = √(0^2 + 0^2 + (-34)^2) = √(0 + 0 + 1156) = √1156 = 34
Найдем площадь треугольника:
S = (1/2)* 34 = 17 .
В решении.
Пошаговое объяснение:
1) Басейн при одночасному включенні трьох труб може наповнитися за
4 год. Через одну першу трубу - за 10 год, а через одну другу – за 15 год.
За який час може наповнитися басейн через одну третю трубу?
1 - объём всего бассейна.
1/10 - часть бассейна, заполняемая первой трубой за час.
1/15 - часть бассейна, заполняемая второй трубой за час.
1/х - часть бассейна, заполняемая третьей трубой за час (время неизвестно).
По условию задачи уравнение:
1/10 + 1/15 + 1/х = 1/4
Общий знаменатель 60х, надписываем над числителями дополнительные множители, избавляемся от дроби:
6х*1 + 4х*1 + 60 = 15х*1
6х+4х+60=15х
10х-15х= -60
-5х = -60
х= -60/-5
х=12 (часов) - время заполнения бассейна одной третьей трубой.
2) Двом екскаваторам дано завдання вирити котлован. Працюючи
разом, вони можуть виконати це завдання за 20 днів. Але спочатку
24 дні працював один екскаватор, а потім роботу закінчив інший. За
який час було виконано завдання, якщо екскаватор, що працював
першим, може один вирити весь котлован за 36 днів?
1 - объём всего котлована.
1)Сначала нужно найти производительность второго экскаватора (часть котлована, которую он может выкопать за день):
1/36 - часть котлована, которую может выкопать первый экскаватор за день (его производительность по условию задачи).
1/х - часть котлована, которую может выкопать второй экскаватор за день (его производительность по условию задачи).
(1/36 + 1/х) - общая производительность двух экскаваторов.
По условию вместе могут выкопать котлован за 20 дней, уравнение:
(1/36 + 1/х) * 20 = 1
20/36 + 20/х = 1
Общий знаменатель 36х, надписываем над числителями дополнительные множители, избавляемся от дроби:
х*20 +36*20 = 36х*1
20х+720=36х
20х-36х= -720
-16х= -720
х= -720/-16
х=45 (дней) - за столько дней может выкопать котлован второй экскаватор.
А его производительность 1/45 - часть котлована, которую может выкопать второй экскаватор за день.
2)Найти общее количество дней, за которое был выкопан котлован.
По условию задачи сначала 24 дня работал первый экскаватор.
1/36 * 24 = 24/36 = 2/3 (котлована выкопал первый экскаватор).
1 - 2/3 = 1/3 (котлована докапывал второй экскаватор).
1/3 : 1/45 = 15 (дней) - работал второй экскаватор.
24 + 15 = 39 (дней) - общее количество дней, за которое два экскаватора выкопали котлован, работая по очереди.
Проверка:
1/36 * 24 + 1/45 * 15 = 2/3 + 1/3 = 1, верно.
Стороны треугольника лежат на прямых x+5у–7=0, 3x–2y–4=0, 7x+y+19=0. Вычислить его площадь S.
Находим координаты вершин треугольника как точки пересечения заданных прямых.
3x–2y–4=0, 3x–2y–4=0,
7x+y+19=0 |x2 = 14x+2y+38=0
17x + 34 = 0, x = -34/17 = -2.
y = (3/2)*x - (4/2) = y = (3/2)*(-2) - (4/2) = -3 - 2 = -5.
Точка А(-2; -5).
x+5у–7=0, |x-7 = -7x-35y+49=0
7x+y+19=0, 7x+y+19=0
-34y+68 = 0, y = -68/-34 = 2.
x = 7 - 5y = 7 - 5*2 = -3.
Точка В(-3; 2).
x+5у–7=0, |x(-3) = -3x-15y+21 = 0
3x–2y–4=0 3x–2y–4 = 0
-17y+17 = 0, y = -17/-17 = 1.
x = 7 - 5y = 7 - 5*1 = 2.
Точка С(2; 1).
Найдем вектора по координатам точек:
AB = {Bx - Ax; By - Ay; Bz - Az} = {-3 - (-2); 2 - (-5); 0 - 0} = {-1; 7; 0}
AC = {Cx - Ax; Cy - Ay; Cz - Az} = {2 - (-2); 1 - (-5); 0 - 0} = {4; 6; 0}
S = (1/2) |AB × AC|
Найдем векторное произведение векторов:
c = AB × AC
AB × AC =
i j k
ABx ABy ABz
ACx ACy ACz
=
i j k
-1 7 0
4 6 0
= i (7·0 - 0·6) - j ((-1)·0 - 0·4) + k ((-1)·6 - 7·4) =
= i (0 - 0) - j (0 - 0) + k (-6 - 28) = {0; 0; -34}
Найдем модуль вектора:
|c| = √(cx^2 + cy^2 + cz^2) = √(0^2 + 0^2 + (-34)^2) = √(0 + 0 + 1156) = √1156 = 34
Найдем площадь треугольника:
S = (1/2)* 34 = 17 .