6) Построй схемы и составь выражения к задачам. Рассмотри разные варианты решения. Найди значения выражений при данных значениях букв наиболее удобным . а) У Антона было ар. Он купил на бр. книги, а на ср. тетради. Сколько рублей у него ещё осталось? (а = 240, b= 168, с = 32).
AK = x, BL = y,
тк AB = CD и BC = AD
имеем:
cm = ak = x
kb = md = nx
nd = bl = y
lc = an = ny
ΔAKN = ΔLME по 1 признаку (ak = cm, an = lc, ∠kan = ∠lcm)
=> kn = lm
аналогично получаем
kl = nm
Таким образом, в 4-хугольнике klmn противоположные стороны равны => этот 4-хугольник - параллелограмм
пусть km ∩ ln = O
Δaon = Δloc по 2 признаку (an = lc = ny, ∠oan = ∠ocl и ∠olc = ∠ona как внутренние накрест лежащие при AD || BC) => ∠aon = ∠loc => ∠aoc = 180 => с лежит на прямой ao
из равенства треугольников также следует, что ao = oc => точка o - точка пересечения диагоналей парал-ма abcd, что и требовалось доказать
б) пусть ak = cm = 2x
kb = md = 5x
bl = nd = 2y
an = lc = 5y
заметим, что sin(bad) = sin(180 - bad) = sin(abc) = sinA
Sabcd = 7x * 7y * sinA = 49xysinA
Sklmn = Sabcd - 2(Sakn + Sbkl) = 49xysinA - 2(10xysinA / 2 + 10xysinA / 2) = 49xysinA - 20xysinA = 29xysinA
Sklmn / Sabcd = 29xysinA / (49xysinA) = 29 / 49
ответ: а) доказано; б) 29 / 49.
ответ:Дано: 1 с 10 л
переливали из сосуда в сосуд
1/2 --- во второй;
1/3 --- в первый;
1/4 --- во второй
1/5 --- в первый ;
1/6 --- во второй и т.д
всего 2017 переливаний
Найти: сколько воды осталось в 1- ом сосуде?
Решение.
Для упрощения расчета примем начальный объем воды за 1 и будем делать вычисления в ее частях
1) из 1 во 2 перелили 1/2. В обоих сосудах стало по 1/2
2) из второго перелили 1/3 имеющегося объема. т.е.
(1/3)*(1/2) = 1/6 от общего перелили во второй раз
во втором осталось: 1/2 - 1/6 = 3/6 - 1/6 = 2/6 = 1/3 --- после второго переливания
в первом стало: 1/2 + 1/6 = 3/6 + 1/6 = 4/6 = 2/3 --- после второго переливания.
3) из 1 перелили 1/4 от имеющегося объема воды,т.е. (1/4)*(2/3) = 1/6
2/3 - 1/6 = 4/6 - 1/6 = 3/6 = 1/2 --- после третьего переливания осталось
во втором стало: 1/3 + 1/6 = 2/6 + 1/6 = 3/6 = 1/2 --- после третьего переливания
Получается, что после нечетного переливания в сосудах становится равный объем воды, четное добавляет в первый сосуд некоторый объем, но добавленный объем затем выливается во второй сосуд.
Вычисления для 7 переливаний сведены в таблицу приложения.
2017 - число нечетное. Значит, после него останется 1/2 первоначального объема.
10 * (1/2) = 5 (л)
ответ: 5л