50 на координатной плоскости нарисуй квадрат abcd, если известны три его вершины: a(1; 8) b(6; 8) c(6; 3) определи и запиши координаты четвёртой вершины квадрата!
Найти экстремумы функции 9. z = 5x² + 2xy -y² - 10x -2y -5
ответ: экстремума нет
Пошаговое объяснение:
Алгоритм исследования функции z=f(x,y) на экстремум
Найти частные производные ∂z/∂x и ∂z/∂y. Составить и решить систему уравнений { ∂z/∂x=0 ; ∂z/∂y=0. ( Точки, координаты которых удовлетворяют указанной системе, называют стационарными. )
Приведение к стандартному виду:
\begin{gathered}\displaystyle 2,\!1 \cdot a^2 b^2 c^4 \cdot \bigg ( - 1\frac{3}{7} \bigg ) \cdot bc^3 d = - \bigg ( \frac{21}{10} \cdot \frac{10}{7} \bigg ) \cdot a^2 \cdot b^2b \cdot c^4c^3 \cdot d = = - \frac{21}{7} \cdot a^2 \cdot b^{2+1} \cdot c^{4+3} \cdot d = \boxed {- 3a^2 b^3c ^7d}\end{gathered}2,1⋅a2b2c4⋅(−173)⋅bc3d=−(1021⋅710)⋅a2⋅b2b⋅c4c3⋅d==−721⋅a2⋅b2+1⋅c4+3⋅d=−3a2b3c7d
Коэффициент одночлена: \boxed {-3}−3 .
Задание 2.
Формула для нахождения объема прямоугольного параллелепипеда (VV - объем; xx , yy , zz - измерения прямоугольного параллелепипеда): V=xyzV=xyz .
Значит, объем исходного параллелепипеда равен:
\begin{gathered}V = \Big (4a^2b^5 \Big ) \cdot \Big (3ab^2 \Big ) \cdot \Big (2ab \Big ) = \Big (4 \cdot 3 \cdot 2 \Big ) \cdot a^2aa \cdot b^5b^2b = = 24 \cdot a^{2+1+1} \cdot b^{5+2+1} =\boxed {24a^4b^8}\end{gathered}V=(4a2b5)⋅(3ab2)⋅(2ab)=(4⋅3⋅2)⋅a2aa⋅b5b2b==24⋅a2+1+1⋅b5+2+1=24a4b8
* * * * * * * * * * * * * * * * * * * * * * * * * *
Найти экстремумы функции 9. z = 5x² + 2xy -y² - 10x -2y -5
ответ: экстремума нет
Пошаговое объяснение:
Алгоритм исследования функции z=f(x,y) на экстремум
Найти частные производные ∂z/∂x и ∂z/∂y. Составить и решить систему уравнений { ∂z/∂x=0 ; ∂z/∂y=0. ( Точки, координаты которых удовлетворяют указанной системе, называют стационарными. )
∂z/∂x=10x +2y - 10 =2(5x+y -5) ; ∂z/∂y=2x-2y -2=2(x-y -1)
{2(5x+y -5) =0 ; 2(x-y -1) =0 ⇔ { 5x+y = 5 ; x - y = 1 .⇔ { x = 1 ; y = 0 .
M₀ (1 ; 0 ) _единственная стационарная точка.
Найдем ∂²z/∂x², ∂²z/∂x∂y, ∂²z/∂y² в стационарной точке
( в данной задаче все они постоянные ) :
∂²z/∂x²=(10x +2y -10) 'ₓ = 10 ; ∂²z/∂x∂y=(10x +2y -10) ' у =2 ;
∂²z/∂y² =(2x-2y -2)' у = - 2 .
Вычисляем значение Δ = AC - B²
* * * A = ∂²z/∂x² ; B = ∂²z/∂x∂y ; C =∂²z/∂y² * * *
Δ = 10*(-2) -2² = - 24 < 0 ⇒ экстремума нет .