Все числа кратны своему делителю. Если мы найдем, что число без остатка ДЕЛИТСЯ на 3 или 9, то это будет означать, что ОНО им КРАТНО. Числа в данных примерах состоят из одинаковых цифр. Когда будем складывать цифры чисел, чтобы понять , соответствуют ли они признакам делимости а 3 и 9, мы увидим, что СЛОЖЕНИЕ цифр можно заменить УМНОЖЕНИЕМ. 1) признак делимости на 3: сумма цифр делится на 3 - сумма цифр ( 444 444 ) = 6 · 4 = 3 · 2 · 4 = 24. Даже не проводя действие: 24:4=8 в доказательство того, что сумма цифр числа делится на 3 без остатка, мы видим, что 3 - является СОМНОЖИТЕЛЕМ суммы цифр, ⇒число делится на 3, ⇒ число кратно 3. - сумма цифр ( 777 777 777 777) = 3 · 4 ·7 = 84; ( сумма цифр числа состоит из ТРЕХ семерок , взятых 4 раза. Т.е тройка будет входить в сомножители суммы цифр числа) 84:3=28. ⇒ сумма цифр делится на 3; ⇒ число кратно 3. ответ: данные числа кратны 3. 2) признак делимости на 9: Сумма цифр делится на 9. - сумма цифр (111 111 111) = 9 · 1 = 9; (9 является сомножителем в сумме цифр числа ⇒ число делится) - сумма цифр (888 888 888) = 9 · 8 = 72; ( 9 является сомножителем суммы цифр числа). Число делится на 9, ⇒ кратно 9. - сумма цифр числа (9 999 999) = 7 · 9 = 72; (9 входит в число делителей суммы цифр числа,⇒ число делится на 9 ⇒ число кратно 9) - сумма цифр числа(666 666 666 666) = 4 · 3 · 6 = 4 · 3 · 2 · 3 = 3 · 3 · 4 · 2 = 9 · 8 = 72. (9 входит в число сомножителей суммы цифр числа,⇒число делится на 9, ⇒ число кратно 9) ответ: данные числа кратны 9. Утверждения 1) и 2) верны.
1) Уравнение стороны АВ:
, после сокращения на 10 получаем каноническое уравнение:
В общем виде х-у-3 = 0.
В виде уравнения с коэффициентом у = х-3.
2) уравнение высоты Ch.
(Х-Хс)/(Ув-Уа) = (У-Ус)/(Ха-Хв).
Подставив координаты вершин, получаем:
х + у + 1 = 0, или
у = -х - 1.
3) уравнение медианы am.
(Х-Ха)/(Ха1-Ха ) = (У-Уа)/(Уа1-Уа).
Основание медианы Am (Ха1;Уа1)= ((Хв+Хс)/2; (Ув+Ус)/2) =
= ((9-5)/2=2; (6+4)/2=5) = (2;5).
Получаем уравнение Am:
Можно сократить на 3:
y = 3x - 1.
4) Точка n пересечения медианы Аm и высоты Ch.
Приравниваем y = 3x - 1 и у = -х - 1.
4х = 0,
х = 0, у = -1.
5) уравнение прямой, проходящей через вершину C параллельно стороне AB.
(Х-Хс)/( Хв-Ха) = (У-Ус)/(Ув-Уа).
х - у + 9 = 0,
у = х + 9.
6) расстояние от точки С до прямой АВ.
Это высота на сторону АВ.
h = 2S/AB.
Находим стороны треугольника:
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √200 ≈ 14.14213562,
BC = √((Хc-Хв)²+(Ус-Ув)²) = √200 ≈ 14.14213562,
AC = √((Хc-Хa)²+(Ус-Уa)²) = √80 ≈ 8.94427191.
Площадь находим по формуле Герона:
S = 60.
h = 2*60/√200 = 8.485281.
Числа в данных примерах состоят из одинаковых цифр. Когда будем складывать цифры чисел, чтобы понять , соответствуют ли они признакам делимости а 3 и 9, мы увидим, что СЛОЖЕНИЕ цифр можно заменить УМНОЖЕНИЕМ.
1) признак делимости на 3: сумма цифр делится на 3
- сумма цифр ( 444 444 ) = 6 · 4 = 3 · 2 · 4 = 24.
Даже не проводя действие: 24:4=8 в доказательство того, что сумма цифр числа делится на 3 без остатка, мы видим, что 3 - является СОМНОЖИТЕЛЕМ суммы цифр, ⇒число делится на 3, ⇒ число кратно 3.
- сумма цифр ( 777 777 777 777) = 3 · 4 ·7 = 84; ( сумма цифр числа состоит из ТРЕХ семерок , взятых 4 раза. Т.е тройка будет входить в сомножители суммы цифр числа) 84:3=28. ⇒ сумма цифр делится на 3; ⇒ число кратно 3.
ответ: данные числа кратны 3.
2) признак делимости на 9: Сумма цифр делится на 9.
- сумма цифр (111 111 111) = 9 · 1 = 9; (9 является сомножителем в сумме цифр числа ⇒ число делится)
- сумма цифр (888 888 888) = 9 · 8 = 72; ( 9 является сомножителем суммы цифр числа). Число делится на 9, ⇒ кратно 9.
- сумма цифр числа (9 999 999) = 7 · 9 = 72; (9 входит в число делителей суммы цифр числа,⇒ число делится на 9 ⇒ число кратно 9)
- сумма цифр числа(666 666 666 666) = 4 · 3 · 6 = 4 · 3 · 2 · 3 = 3 · 3 · 4 · 2 = 9 · 8 = 72. (9 входит в число сомножителей суммы цифр числа,⇒число делится на 9, ⇒ число кратно 9)
ответ: данные числа кратны 9.
Утверждения 1) и 2) верны.