Сечение сферы плоскостью есть окружность. Необходимо найти радиус этой окружности и по формуле длины окружности найти длину линии пересечения сферы плоскостью. Обозначим центр искомой окружности точкой А, центр сферы точкой О, а точкой В обозначим любую точку на линии пересечения плоскости со сферой. Тогда получим прямоугольный треугольник ОАВ, где угол А=90°, ОВ - радиус сферы, ОА - расстояние от центра сферы до центра окружности. По теореме Пифагора найдём АВ: АВ=√(ОВ²-ОА²)=√(2,6²-2,4²)=√(6,76-5,76)=√1=1 дм Далее по формуле длины окружности находим длину нашей линии: l=2πR=2π*1=2π≈2*3,14≈6,28 дм.
Обозначим центр искомой окружности точкой А, центр сферы точкой О, а точкой В обозначим любую точку на линии пересечения плоскости со сферой. Тогда получим прямоугольный треугольник ОАВ, где угол А=90°, ОВ - радиус сферы, ОА - расстояние от центра сферы до центра окружности.
По теореме Пифагора найдём АВ:
АВ=√(ОВ²-ОА²)=√(2,6²-2,4²)=√(6,76-5,76)=√1=1 дм
Далее по формуле длины окружности находим длину нашей линии:
l=2πR=2π*1=2π≈2*3,14≈6,28 дм.
ответ:В отряде 7 офицеров и 20 рядовых. Сколькими можно сформировать разведывательную группу из 3 офицеров и 12 рядовых?
Пошаговое объяснение:
Трех офицеров из 10 можно выбрать С где С(10,3) - число сочетаний из 10 по 3.
С(10,3) = 10! / (3! · (10 - 3)!) = 10! / (3! · 7!) =
= 8 · 9 · 10 / (1 · 2 · 3) = 120;
Семь солдат из 20 можно выбрать С С(20,7) = 20! / (7! · (20 - 7)!) = 20! / (7! · 13!) =
= 14 · 15 · 16 · 17 · 18 · 19 · 20 / (1 · 2 · 3 · 4 · 5 · 6 · 7) = 77520;
Всего выбрать разведывательную группу:
С(10,3) · С(20,7) = 120 · 77520 = 9302400.
ответ: 9302400.