42 беттен тұратын мәтінді бірінші оператор 3 сағат та екіншісі 6 сағат та тереді егер екі оператор бірігіп терсе олар жұмысты қанша уақытта орындайды
а)5 х 4 х 9 и делим все на 8 х 15 х 16 ,получается что 4 делим на 16 получается 4 ,5 на 15 получается тройка внизу и эту тройку делим на 3 ,из этого она оказывается наверху и получается что 3 надо разделить на 8 х 4 ,из этого делаем вывод ,что 3 надо разделить на 32 ,то есть 0.09375
б) 15 делим на 45 получаем 3 ,7 на 21 и тройка уходит вниз и эту тройку сокращаем на девятку и тройка остается наверху и эту троку убираем с тройкой которая была от 45 и получается 1\4 то есть 0.25
попробуем построить, ну, например для 4-х точек (см.рис).
Прямая проходит через каждые две точки. Т.е. нужно посчитать сколько различных пар точек можно выбрать из 4-х точек. Это - известная в комбинаторике формула для подсчета числа сочетаний (именно сочетаний, а не размещений, потому, что прямая АВ и прямая ВА - одна и таже прямая). Подсчитаем для 4-х точек:
C₄²=4!/(4-2)!4!=4!/(2!*2!)=3*4/2=6;
и действительно видим 6 прямых. Тогда для 20 точек:
а)0,09375 ; б)0.25
Пошаговое объяснение:
а)5 х 4 х 9 и делим все на 8 х 15 х 16 ,получается что 4 делим на 16 получается 4 ,5 на 15 получается тройка внизу и эту тройку делим на 3 ,из этого она оказывается наверху и получается что 3 надо разделить на 8 х 4 ,из этого делаем вывод ,что 3 надо разделить на 32 ,то есть 0.09375
б) 15 делим на 45 получаем 3 ,7 на 21 и тройка уходит вниз и эту тройку сокращаем на девятку и тройка остается наверху и эту троку убираем с тройкой которая была от 45 и получается 1\4 то есть 0.25
190 прямых
Пошаговое объяснение:
попробуем построить, ну, например для 4-х точек (см.рис).
Прямая проходит через каждые две точки. Т.е. нужно посчитать сколько различных пар точек можно выбрать из 4-х точек. Это - известная в комбинаторике формула для подсчета числа сочетаний (именно сочетаний, а не размещений, потому, что прямая АВ и прямая ВА - одна и таже прямая). Подсчитаем для 4-х точек:
C₄²=4!/(4-2)!4!=4!/(2!*2!)=3*4/2=6;
и действительно видим 6 прямых. Тогда для 20 точек:
C₂₀²=20!/((20-2)!2!)=19*20/2=190.