4. Верны ли следующие утверждения? а) пересечение двугранного угла и плоскости, перпендикулярной его ребру, называется линейным углом двугранного угла; б) каждый двугранный угол ограничен двумя полуплоскостями, называемыми его гранями? в) величиной двугранного угла называется величина его линейного угла?
Без объяснения верно, не верно
Из 65 человек 3 купили сразу 3 покупки. Остальные 62 - меньше трёх.
Уменьшим все числа на 3, чтобы дальше не путаться.
Всего купили 32 Х, 33 М, 34 Т, 17 купили только Х и М, 16 купили только М и Т,
12 купили только Х и Т.
Значит, 32 - 17 - 12 = 3 купили только Х. 33 - 17 - 16 = 0 купили только М,
34 - 16 - 12 = 6 купили только Т.
Получается такая картина: 3 человека купили Х, М и Т. 17 купили Х и М.
16 купили М и Т. 12 купили Х и Т. 3 купили только Х, 6 купили только Т.
Никто не купил только М. Проверим.
Х купили: 3+17+12+3 = 35. М купили 3+17+16 = 36. Т купили 3+16+12+6 = 37.
Всё правильно. Всего купивших было:
3 + 17 + 16 + 12 + 3 + 6 = 57 человек. А всего пришло в магазин 65.
Значит, 65 - 57 = 8 человек не купили ничего.
Диаграмму Эйлера я нарисовал.
3 человека купили Х+Т+М.
Они входят в число покупателей, купивших по две вещи, значит:
Т+Х купили 15-3=12 человек.
Т+М купили 19-3=16 человек.
М+Х купили 20-3=17 человек.
Всего этими покупателями куплено:
Телевизоров 12+3+16=31 (т)
Оставшиеся 37-31=6 телевизоров купили 6 человек.
Холодильников куплено теми, кто купил больше одного товара,
35-(12+3+17)=32 (х)
Оставшиеся купили 35-32=3 человека.
Все проданные микроволновки куплены покупателями, купившими по 2 или 3 товара.
Следовательно, покупателей было (12+3+17+16) =48 купивших более 1 вещи
и 6+3=9 (чел) купили по одному виду товаров.
Всего 48+9=57 человек.
Из вошедших в магазин 65-57=8 челове ушли без покупок.