4. Прямоугольник разделен на квадраты со стороной 1 см. В каждом квадратике записано число (не обязательно целое) таким образом, что сумма чисел в каждой строке равна 1, а сумма чисел в каждом столбце равна 2. Может ли площадь этого прямоугольника равна 2022 см?? ответ обоснуйте.
(2,9,6)
Пошаговое объяснение:
Р1(1,2,3) это точка, которая лежит на прямой.
Координаты вектора Т коллинеарного с прямой - (2,4,5)
Найдем на прямой точку О такую, что вектор МО будет перпендикулярен вектору Т. Для этого надо найти такое х, чтобы скалярное произведение (Р1+х*Т-М,Т)=0 После подстановки координат получаем уравнение
45х-45=0 => x=1
Теперь найдем координаты точки P2=Р1+2х*Т=Р1+2*Т=(1,2,3)+(4,8,10)=(5,10,13)
Точка симметричная точке М является суммой следующих векторов
P1+(P2-M)=(1,2,3)+(5-4,10-3,13-10)=(2,9,6)
cos a = 0,9539
Пошаговое объяснение:
Во-первых, нужно выразить cos a из тригонометрического тождества:
cos^2 a + sin^2 a = 1;
cos^2 a = 1 - sin^2 a;
cos a = √(1 - sin^2 a).
Определим значение cos a при заданном значении sin a:
cos a = √(1 - sin^2 a) = √(1 - (0,3)^2) = √(1 - 0,09) = √(0,91) = | 0,9539 |.
Чтобы раскрыть модуль, следует учесть величину угла а. Поскольку 3П/2 < а < 2П, угол а находится в 4 четверти, в которой cos имеет знак "+". Следовательно, раскрываем модуль co знаком "+":
| 0,9539 | = 0,9539