В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
вова985
вова985
18.02.2020 15:20 •  Математика

3сынып математика 24бет 2_3есеп​

Показать ответ
Ответ:
nikaknekto
nikaknekto
14.08.2021 05:10
 Пабло Пикассо родился 25 октября 1881 года в Малаге, шумном портовом городе на юге Испании. Его родители - Мария Пикассо Лопес и Хосе Руис Бласко. Хосе занимался живописью и преподавал ее. В семье было четверо детей, Пабло был старшим. 
В 1895 году семья переехала в Барселону, где Хосе стал работать в художественной школе Ла Лонха. Пикассо начал учиться именно там, а в 1897 году продолжил образование в мадридской Академии изящных искусств. Вскоре он понял, что Академия ничего ему не даст, и вернулся в Барселону, где организовал собственную студию. Ему исполнилось тогда всего 16 лет. 
Пикассо стал героем многочисленных книг, статей, выставок и фильмов еще при жизни. При этом сам художник в последние свои годы крайне редко появлялся на людях, предпочитая тихую уединенную жизнь в обществе Жаклин. Он умер 8 апреля 1973 года в возрасте 91 года и был похоронен в старинном замке Вовенарг, где жил и работал в 1958-1961 годах. 
Его ранние картины чаще всего наполнены грустью. Первоначально он подписывался на них «П. Руис», однако позже дополнил эту подпись девичьей фамилией матери, превратившись в «П. Руис Пикассо». В двадцатилетнем возрасте он взял себе псевдоним, под которым его и узнал весь мир. Псевдоним потребовался Пикассо, чтобы его не путали с отцом. Пабло был на редкость самоуверенным юношей и не сомневался в том, что сумеет добиться грандиозного успеха!
0,0(0 оценок)
Ответ:
Аня4678
Аня4678
21.12.2020 18:37
В разделе "Определение  значений тригонометрических функций любого угла" мы выяснили, что поведение тригонометрических функций, и функции у = sin х в частности, на всей числовой прямой (или при всех значениях аргумента х) полностью определяется ее поведением в  интервале    0 < х < π/2 .Поэтому прежде всего мы построим график функции у = sin х именно в этом интервале.Составим следующую таблицу значений нашей функции;Отмечая соответствующие точки на плоскости координат и соединяя их плавной линией, мы получаем кривую, представленную на рисункеПолученную кривую можно было бы построить и геометрически, не составляя таблицы значений функции у = sin х.1.Первую четверть окружности радиуса 1  разделим на 8 равных частей.Ординаты точек деления окружности представляют собой синусы   соответствующих   углов.2.Первая  четверть   окружности соответствует углам от 0 до π/2. Поэтому на оси хвозьмем отрезок    [0 , π/2 ] и разделим его на 8 равных частей.3.Проведем прямые, параллельные оси х, а из точек деления восставим перпендикуляры до пересечения с горизонтальными прямыми.4.Точки пересечения соединим плавной  линией.Теперь обратимся к интервалу π/2 < х < π. 
Каждое  значение аргумента  х из этого  интервала   можно   представить   в   виде
x = π/2 + φгде 0 <φ < π/2 . По формулам приведенияsin ( π/2 + φ) = соsφ = sin ( π/2 — φ).Точки оси х с    абциссами π/2 + φ и  π/2 — φ   симметричны    друг другу относительно точки оси х с абсциссой π/2, и синусы в этих точках одинаковы. Это позволяет получить график функции у = sin х в интервале [π/2 , π ] путем простого симметричного отображения графика этой функции в интервале  [0 , π/2] относительно прямой х = π/2.Теперь,  используя свойство  нечетности функции  у = sin х,sin  (— х) = — sin х,легко   построить   график  этой  функции  в   интервале   [— π, 0].Функция у = sin х периодична с периодом 2π;. Поэтому для построения всего графика этой функции достаточно кривую, изображенную на рисунке, продолжить влево и вправо периодически  с  периодом   2π.    Полученная в   результате   этого кривая  называется синусоидой. Она и представляет собой график функции у = sin х. Рисунок  хорошо иллюстрирует все те свойства функции у = sin х, которые раньше были доказаны нами. Напомним эти свойства.1)   Функция у = sin х определена для всех значений х, так что областью ее определения является совокупность всех действительных чисел.2)   Функция у = sin х ограничена. Все значения, которые она принимает, заключены в интервале от —1 до 1, включая эти два  числа.  Следовательно,   область   изменения   этой   функции определяется неравенством  —1< у < 1. При х = π/2 + 2kπфункция принимает   наибольшие   значения,   равные  1,   а   при   х = — π/2 + 2kπ — наименьшие значения, равные — 1.3)   Функция у = sin х   является нечетной (синусоида симметрична относительно начала координат).4)  Функция у = sin х периодична с периодом 2π.5)  В интервалах 2nπ < x < π + 2nπ (n — любое целое число) она   положительна,   а   в   интервалах   π + 2kπ < х < 2π + 2kπ (k — любое целое число) она отрицательна. При х = kπ функция обращается в нуль. Поэтому эти значения аргумента х (0; ±π; ±2π; ...) называются нулями функции у = sin x6)   В интервалах   — π/2 + 2nπ < х < π/2  + 2nπ  функция у = sin x монотонно   возрастает,   а  в   интервалах  π/2 + 2kπ < х < 3π/2  + 2kπ  она   монотонно убывает. Cледует    особо   обратить   внимание на поведение функции у = sin x вблизи точких= 0.Как видно из рисунка , в окрестности точки х = 0 синусоида почти сливается с биссектрисой 1-го и 3-го координатных углов. Поэтому при малых углах х, выраженных в радианах, или при малых по абсолютной величине числовых значениях х (как положительных, так и отрицательных)sin x ≈  x.Например, sin 0,012 ≈ 0,012; sin (—0,05) ≈ —0,05;sin 2° = sin   π • 2  /180 = sin  π/90  ≈ 0,03 ≈ 0,03.Вместе с тем  следует   отметить,   что   при   любых   значениях   х| sin x |  <  | x |.                             (1)Действительно, пусть радиус окружности, представленной на рисунке, равен 1, 
a   /  AОВ = х.Тогда sin x = АС. Но АС < АВ, а АВ, в свою очередь, меньше длины дуги АВ, на которую опирается угол х. Длина этой дуги равна, очевидно, х, так как радиус окружности равен 1.  Итак,  при 0 < х < π/2sin х < х.Отсюда в силу нечетности функции у = sin x легко показать, что при — π/2 < х < 0| sin x |  <  | x |.  Наконец,  при x = 0| sin x | = | x |.Таким образом, для | х | < π/2 неравенство (1) доказано. На самом же деле это неравенство верно и при  | x | > π/2  в силу того, что | sin х | < 1,   а  π/2 > 1 Упражнения1.По графику функции у = sin x определить: a) sin 2;  б) sin 4; в) sin (—3).2.По графику функции  у = sin x определить,   какое число из интервала 
[ —  π/2 ,  π/2] имеет синус, равный:  а) 0,6;   б) —0,8.3.  По графику функции  у = sin x определить,   какие числа имеют   синус,  
 равный 1/2.4.  Найти приближенно (без использования таблиц): a) sin 1°;   б) sin 0,03;   
в) sin (—0,015);   г) sin (—2°30').
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота