3. Задания. Изучить связь между отношениями параллельности и перпендикулярности в пространстве. Проверку осуществить с таблицы. - Даны прямая а, перпендикулярная к плоскости α, и прямая b. Укажите взаимное расположение прямых а и b:
Если b параллельна , то……
Если b перпендикулярна , то ……
Если b параллельна или принадлежит , то…..
Если b перпендикулярна , то……
- Даны прямая а, перпендикулярная к плоскости α, и плоскость.
Если параллельна , то……
Если перпендикулярна , то ……
Если параллельна а или а принадлежит , то…..
Если перпендикулярна , то……
50 км/ч скорость мотоциклиста
Пошаговое объяснение:
Пусть скорость мотоциклиста = х км/ч
Тогда скорость велосипедиста = х-30 км/ч
Весь путь от А до Б = 1 (1 целая часть)
Тогда: 1 - 2/7 = 5/7 части пути до встречи проехал мотоциклист
Мотоциклист проехал 5/7 пути со скоростью х км/ч
Велосипедист проехал 2/7 пути со скоростью х-30 км/ч
Время они затратили одно и то же, тогда :
5/7 : х = 2/7 : (х - 30)
5/7*(х-30) = 2/7х
5/7х - 150/7 = 2/7х
5/7х - 2/7х = 150/7
3/7х = 150/7
х = 150/7 : 3/7 = 150/7 * 7/3
х = 50 (км/ч) скорость мотоциклиста
Против течения катер плыл 7/(х-2) часов, по течению плыл 27/(х+2) ч.
Составляем уравнение:
7/(х-2) + 27/(х+2) = 2
7*(х+2) + 27(х-2) = 2 (х+2)*(х-2)
7х+14+27х-54=2х(квадрат)-8
34х-40-2хквадрат+ 8 =0
2хквадрат -34х + 32=0
хквадрат - 17х + 16 =0
D=17*17-4*16=289-64=225
х1=(17-15)/2 = 1 (км/ч) - не может быть решением данной задачи, т. к. 1 км/ч меньше 2 км/ч, а скорость катера не может быть меньше скорости течения.
х2 = (17+15)/2 = 16 км/ч
ответ. Собственная скорость катера 16 км/ч