2пешехода по 6 км,но первый пешеход провёл в дороге на 1 час больше,чем другой,потому что его скорость была на 3 км/час меньше,чем скорость второго.сколько времени находился в дороге каждый
1) Обозначим через Х - скорость первого пешехода Тогда (Х + 3) - скорость второго пешехода 2) Так как длина пути 6 км, то время, за которое первый пешеход этот путь равно: 6 --- Х А время второго пешехода равно: 6
(Х + 3) 3) Так как первый пешеход провел в дороге на 1 час больше, то составляем уравнение: 6 6 - = 1 Х (Х + 3) Умножаем все члены уравнения на Х(Х+3) получаем: 6Х + 18 - 6Х = Х² + 3Х Х² + 3Х - 18 = 0 4) Решаем это квадратное уравнение. Так как коэффициент при Х² равен 1, то корни уравнения находим по теореме Виетта: Х₁ = 3 Х₂ = -6 Так как скорость не может быть отрицательной, то остается Х = 3 Значит скорость первого пешехода - 3 км/час, а второго (3 + 3) = 6 км/час 5) Находим время в пути каждого пешехода: - первого пешехода: 6/3 = 2 часа - второго пешехода: 6/6 = 1 час
Тогда (Х + 3) - скорость второго пешехода
2) Так как длина пути 6 км, то время, за которое первый пешеход этот путь равно:
6
---
Х
А время второго пешехода равно:
6
(Х + 3)
3) Так как первый пешеход провел в дороге на 1 час больше, то составляем уравнение:
6 6
- = 1
Х (Х + 3)
Умножаем все члены уравнения на Х(Х+3) получаем:
6Х + 18 - 6Х = Х² + 3Х
Х² + 3Х - 18 = 0
4) Решаем это квадратное уравнение. Так как коэффициент при Х² равен 1, то корни уравнения находим по теореме Виетта:
Х₁ = 3 Х₂ = -6
Так как скорость не может быть отрицательной, то остается Х = 3
Значит скорость первого пешехода - 3 км/час, а второго (3 + 3) = 6 км/час
5) Находим время в пути каждого пешехода:
- первого пешехода:
6/3 = 2 часа
- второго пешехода:
6/6 = 1 час