Определение. Назовём числом сочетаний из n по k число выбрать из множества мощностью n элементов множество мощностью k элементов, будем обозначать и определим формулой
Если нужно доказательство, пишите
Итак, приступаем к решению.
Сначала раздаем первому игроку.
Для него есть 32 карты, из которых мы выбираем 10. Тогда количество выбрать эти карты есть число сочетаний из 32 по 10.
Но можно было просто оставить
Мы уже дали 10 карт первому, поэтому осталось 32 - 10 = 22 карт.
Тогда количество раздать второму 10 карт из 22 - это
Или опять же можно было бы оставить
Третьему останется всего лишь 22 - 10 = 12 карт. Тогда точно также, число выбрать из 12 карт 10 равно
Ну хоть здесь нормальное число. Но опять же можно было и оставить
И так, для каждого из игроков есть свои варианты выбора, причем выбор другого, напрямую зависит от выбрав первого. Тогда нам необходимо перемножить все эти результаты.
1. Определим какую часть заказа выполнит первый рабочий за один час 1 / 6 = 1/6 часть. 2. Определим какую часть заказа выполнит второй рабочий за один час 1 / 10 = 1/10 часть. 3. Теперь узнаем какую часть всего заказа смогут выполнить два рабочих, если они будут выполнять заказ одновременно. 1/6 + 1/10 = 5/30 + 3/30 = 8/30 заказа. 4. Узнаем какую часть заказа выполнят эти рабочие за 3 часа совместной деятельности. 8/30 * 3 = 24/30 заказа. 5. Далее определим какую часть заказа останется выполнить. 1 - 24/30 = 6/30 = 1/5 часть заказа. ответ: После трех часов совместной деятельности останется выполнить 1/5 часть всего заказа. . . . получается так)
или
Пошаговое объяснение:
Давайте сначала введём понятие.
Определение. Назовём числом сочетаний из n по k число выбрать из множества мощностью n элементов множество мощностью k элементов, будем обозначать и определим формулой
Если нужно доказательство, пишите
Итак, приступаем к решению.
Сначала раздаем первому игроку.
Для него есть 32 карты, из которых мы выбираем 10. Тогда количество выбрать эти карты есть число сочетаний из 32 по 10.
Но можно было просто оставить
Мы уже дали 10 карт первому, поэтому осталось 32 - 10 = 22 карт.
Тогда количество раздать второму 10 карт из 22 - это
Или опять же можно было бы оставить
Третьему останется всего лишь 22 - 10 = 12 карт. Тогда точно также, число выбрать из 12 карт 10 равно
Ну хоть здесь нормальное число. Но опять же можно было и оставить
И так, для каждого из игроков есть свои варианты выбора, причем выбор другого, напрямую зависит от выбрав первого. Тогда нам необходимо перемножить все эти результаты.
Получим
Или если в числах, то это
2. Определим какую часть заказа выполнит второй рабочий за один час 1 / 10 = 1/10 часть.
3. Теперь узнаем какую часть всего заказа смогут выполнить два рабочих, если они будут выполнять заказ одновременно.
1/6 + 1/10 = 5/30 + 3/30 = 8/30 заказа.
4. Узнаем какую часть заказа выполнят эти рабочие за 3 часа совместной деятельности.
8/30 * 3 = 24/30 заказа.
5. Далее определим какую часть заказа останется выполнить.
1 - 24/30 = 6/30 = 1/5 часть заказа.
ответ: После трех часов совместной деятельности останется выполнить 1/5 часть всего заказа.
.
.
.
получается так)