2 вариант 1 задание:
Найдите соответствие между рисунком, числовым промежутком и неравенством: Изображение на координатной Обозначение неравенство
прямой
1.
2
А) (- о 0; 4)
B)[-2; 00)
C)(-2; 4)
D) (4; 0)
E) –2; 4)
F) (-2; 9)
1) -2 <x<4
2) х > 4
3) x2-2
4)-2<x<4
5) х<4
6) x2-2
II.
х
II.
138π см²
Пошаговое объяснение:
Построим равнобедренную трапецию ABCD с высотой CF (см. Рис. 1).
Согласно условию: AD=18 см, BC=10 см, CF=3 см. Для дальнейших вычислений нам понадобится длина боковой стороны трапеции AB=CD.
Т.к. трапеция равнобедренная, то FD = (AD-BC):2 = 4 см.
ΔCDF - прямоугольный с катетами CF=3 см, FD=4 см, значит он египетский, и его гипотенуза CD=5 см.
При вращении такой трапеции вокруг короткого основания образуется цилиндр с равными осевыми конусообразными выемками с обеих сторон (См. рис. 1.2, 2.1, 2.2). Радиус такого цилиндра равен высоте трапеции R=CF=3 см, а высота цилиндра равна длинному основанию трапеции H=AD=18 см.
Образующей конуса-выемки является боковая сторона трапеции L=CD=5 см, радиус равен радиусу цилиндра R=3 см.
Искомая площадь полной поверхности фигуры вращения состоит из площади боковой поверхности цилиндра и двух боковых поверхностей конусов-выемок.
Площадь боковой поверхности цилиндра: .
Площадь боковой поверхности конуса-выемки:
Площадь полной поверхности:
В правильной четырехугольной призме площадь основания равна 10, а боковое ребро 3√10. Найдите расстояние между стороной основания и диагональю призмы, не пересекающейся с ней.
––––––––––––––––––––––––––––
На рисунке, данном в приложении, сторона основания и диагональ призмы, не пересекающаяся с ней – прямые АД и А1С. Они скрещивающиеся.
Определение: Расстояние между скрещивающимися прямыми – это расстояние между одной из скрещивающихся прямых и параллельной ей плоскостью, проходящей через другую прямую.
Через диагональ призмы А1С и сторону ВС проведем плоскость ВСД1А1. Плоскость содержит ВС║ АД, значит, она параллельна АД ( по т. о параллельности прямой и плоскости).
Длина перпендикуляра, опущенного на эту плоскость из любой точки на прямой АД – есть искомое расстояние.
Отметим на АД точку М.
Проведем отрезок МК║ДД1 и отрезок МН║ ДС. Они будут взаимно перпендикулярны. Соединив К и Н, получим прямоугольный треугольник КМН, в котором гипотенуза КН лежит в плоскости ВА1Д1Д. Следовательно, высота МО этого треугольника – расстояние между АД и плоскостью, содержащей диагональ призмы.
По т.Пифагора найдем КН.
КН=СД1, МН=ДС, КМ=ДД1
КН=√(KM²+MH²)=√190
S ∆ CДД1=СД•ДД1:2=10√10):2
S ∆ CДД1=МО•КН:2
МО=2 S ∆СДД1:КН=10√10):√190=10/√19 - искомое расстояние.
Тот же результат получим, если из прямого угла Д грани ДСС1Д1 опустим перпендикуляр на СД1 или из А – на ВА1, т.к., если прямая параллельна плоскости, то все точки этой прямой равноудалены от той плоскости.