2. Реши задачи. а) Утром на экскурсию в Центральный музей пришли 205 детей, 68 больше, чем после обеда. Сколько всего детей посетило музей? Что На на 68 больше чем после обеда Сколько всего детей посетила музей
1. Рекуррентное соотношение an = an – 1 + 2 вместе с условием a1 = 1 задает арифметическую прогрессию с первым членом 1 и разностью 2: 1, 3, 5, 7, … . Это последовательность нечетных чисел. 2. Рекуррентное соотношение an = 2an – 1 вместе с условием a1 = 1 задает геометрическую прогрессию с первым членом 1 и знаменателем 2: 1, 2, 22, 23, … . Это последовательность степеней двойки, начиная с нулевой степени. Кстати, иногда члены последовательности удобно нумеровать с нуля, или вообще выбирать другой нумерации. 3. Рекуррентное соотношение an = an – 1 + an – 2 вместе с условием a0 = 0, a1 = 1 задает последовательность чисел Фибоначчи: 0, 1, 1, 2, 3, 5, 8, 13, 21, … .
2. Рекуррентное соотношение an = 2an – 1 вместе с условием a1 = 1 задает геометрическую прогрессию с первым членом 1 и знаменателем 2: 1, 2, 22, 23, … . Это последовательность степеней двойки, начиная с нулевой степени.
Кстати, иногда члены последовательности удобно нумеровать с нуля, или вообще выбирать другой нумерации.
3. Рекуррентное соотношение an = an – 1 + an – 2 вместе с условием a0 = 0, a1 = 1 задает последовательность чисел Фибоначчи: 0, 1, 1, 2, 3, 5, 8, 13, 21, … .
Пошаговое объяснение:
Отметим точки A, B и C на координатной плоскости. У точек A и B совпадают абсциссы точек, соединяем их прямой x = 1.
У точек A и C совпадают ординаты точек, соединяем их прямой y = 6.
Через точку B с ординатой 2 проводим прямую y = 2 параллельную прямой y = 6 (противоположной стороне прямоугольника).
Через точку C с абсциссой 7 проводим прямую x = 7 параллельную прямой x = 1 (противоположной стороне прямоугольника).
Проведенные через точки B и C прямые пересекутся в точке D(7; 2), которая и будет 4 вершиной прямоугольника ABCD.