Цифры 2 и 5 могут участвовать как в часах, так и в минутах. 1) Найдем сколько раз могут встречаться в часах цифры 2 и 5. 02 ч 05 ч 12 ч 15 ч 20 ч 21 ч 22 ч 23 ч Итого 8 вариантов При этом смена цифр в минутах на табло для каждого варианта будет равно 60 (60 минут в часе). Значит количество вариантов для часов с цифрами 2 и 5 будет 8*60=480 вариантов
2) А если в разрядах часов нет ни 2 ни 5, то будут годиться только показания минут с 2 или 5. При этом у нас уже учтены варианты с цифрами 2 и 5 в часах. Значит без этих вариантов для часов у нас остается: 24-8=16 часов без цифр 2 и 5.
Количество минут в сутках с цифрами 2 и 5. Для начала найдем сколько раз встречаются цифры 2 и 5 в 1 часе. Минуты за 1 час : 02 мин 05 мин 12 мин 15 мин 20 мин 21 мин 22 мин 23 мин 24 мин 25 мин 26 мин 27 мин 28 мин 29 мин 32 мин 35 мин 42 мин 45 мин 50 мин 51 мин 52 мин 53 мин 54 мин 55 мин 56 мин 57 мин 58 мин 59 мин
Итого 28 вариантов за 1 час
16*28=448 вариантов
480+448=928 комбинаций для электронных часов, где встречаются цифры 2 и 5.
Доказательство Дано: m n = M Отметим на прямой m произвольную точку N, отличную от М. Рассмотрим плоскость =(n, N). Так как M и N, то по А-2 m . Значит обе прямые m, n лежат в плоскости и следовательно , является искомой Докажем единственность плоскости . Допустим, что есть другая, отличная от плоскости и проходящая через прямые m и n, плоскость . Так как плоскость проходит через прямую n и не принадлежащую ей точку N, то по T-1 она совпадает с плоскостью . Единственность плоскости доказана. Теорема доказана
1) Найдем сколько раз могут встречаться в часах цифры 2 и 5.
02 ч 05 ч 12 ч 15 ч 20 ч 21 ч 22 ч 23 ч
Итого 8 вариантов
При этом смена цифр в минутах на табло для каждого варианта будет равно 60 (60 минут в часе).
Значит количество вариантов для часов с цифрами 2 и 5 будет
8*60=480 вариантов
2) А если в разрядах часов нет ни 2 ни 5, то будут годиться только показания минут с 2 или 5. При этом у нас уже учтены варианты с цифрами 2 и 5 в часах.
Значит без этих вариантов для часов у нас остается:
24-8=16 часов без цифр 2 и 5.
Количество минут в сутках с цифрами 2 и 5.
Для начала найдем сколько раз встречаются цифры 2 и 5 в 1 часе.
Минуты за 1 час :
02 мин 05 мин 12 мин 15 мин 20 мин 21 мин 22 мин 23 мин 24 мин 25 мин 26 мин 27 мин 28 мин 29 мин 32 мин 35 мин 42 мин 45 мин
50 мин 51 мин 52 мин 53 мин 54 мин 55 мин 56 мин 57 мин 58 мин 59 мин
Итого 28 вариантов за 1 час
16*28=448 вариантов
480+448=928 комбинаций для электронных часов, где встречаются цифры 2 и 5.
ответ 928 вариантов
Дано: m n = M
Отметим на прямой m произвольную точку N, отличную от М.
Рассмотрим плоскость =(n, N). Так как M и N, то по А-2 m . Значит обе прямые m, n лежат в плоскости и следовательно , является искомой
Докажем единственность плоскости . Допустим, что есть другая, отличная от плоскости и проходящая через прямые m и n, плоскость .
Так как плоскость проходит через прямую n и не принадлежащую ей точку N, то по T-1 она совпадает с плоскостью . Единственность плоскости доказана.
Теорема доказана