Вообще говоря, эту задачу можно решать с метода множителей Лагранжа, но я постараюсь обойтись без них. Задача максимизировать произведение abc трех положительных чисел при условии постоянства суммы a²+b²+c² их квадратов. Понятно. что вместо произведения чисел можно рассмотреть произведение их квадратов, а обозначив их буквами x, y, z соответственно, получаем более симпатичную формулировку: максимизировать произведение xyz положительных чисел при условии x+y+z=K (K - некоторое положительное число).
Как всегда в таких задачах, ищем точки, в которых обе частные производные равны нулю (иными словами, точки, в которых первый дифференциал равен нулю):
Сокращение на x и y оправдано их положительностью. (Кстати, если даже попробовать представить себе параллелепипед с нулевой стороной, шансов у такого вырожденца иметь наибольший объем нет никаких.) Далее теория советует исследовать второй дифференциал в найденных критических точках на положительную или отрицательную определенность с критерия Сильвестра. Давайте последуем этим советам.
Видим, что угловой минор первого порядка -2K/3<0; угловой минор второго порядка K²/3>0. Значит, второй дифференциал отрицательно определен, а это в условиях равенства нулю дифференциала первого порядка означает наличие точки максимума.
Итак, доказано, что наибольший объем среди параллелепипедов с фиксированной диагональю имеет куб.
Вообще говоря, эту задачу можно решать с метода множителей Лагранжа, но я постараюсь обойтись без них. Задача максимизировать произведение abc трех положительных чисел при условии постоянства суммы a²+b²+c² их квадратов. Понятно. что вместо произведения чисел можно рассмотреть произведение их квадратов, а обозначив их буквами x, y, z соответственно, получаем более симпатичную формулировку: максимизировать произведение xyz положительных чисел при условии x+y+z=K (K - некоторое положительное число).
Как всегда в таких задачах, ищем точки, в которых обе частные производные равны нулю (иными словами, точки, в которых первый дифференциал равен нулю):
Сокращение на x и y оправдано их положительностью. (Кстати, если даже попробовать представить себе параллелепипед с нулевой стороной, шансов у такого вырожденца иметь наибольший объем нет никаких.) Далее теория советует исследовать второй дифференциал в найденных критических точках на положительную или отрицательную определенность с критерия Сильвестра. Давайте последуем этим советам.
Видим, что угловой минор первого порядка -2K/3<0; угловой минор второго порядка K²/3>0. Значит, второй дифференциал отрицательно определен, а это в условиях равенства нулю дифференциала первого порядка означает наличие точки максимума.
Итак, доказано, что наибольший объем среди параллелепипедов с фиксированной диагональю имеет куб.
↓↓↓
Пошаговое объяснение:
1) Количество выпадения четного числа 6
Т.к. на первом кубике 2,4,6 и на втором кубике 2,4,6. ответ С
2) Количество выпадения нечетного числа 6
Т.к. на первом кубике 1,3,5 и на втором кубике1,3,5. ответ С
3) Четырьмя может выпасть в сумме число 5
В таблице в каждую ячейку записана сумма числа очков выпавших на первой и второй кости. Нужные ячейки -синие. Их 4.
ответ D
4) Восемнадцатью может выпасть в сумме четное число.
В таблице в каждую ячейку записана сумма числа очков выпавших на первой и второй кости. Нужные ячейки -синие. Их 18.
ответ С
5) Вероятность того, что сумма чисел на двух игральных кубиках будет чётным числом равна 1/2.
Общее число исходов n=36, число благоприятствующих исходов m=18 из п.4. Тогда вероятность события P=m/ n=18 /36=1/2.
ответ A