2. Дано координати трьох вершин прямокутника АВСД: A(-7;-3), B(-7;5),
Д(3;-3).
1) Накреслити цей прямокутник.
2) Знайти координати вершини С.
3) Знайти координати точки перетину діагоналей прямокутника.
4) Обчислити площу і периметр прямокутник, вважаючи, що довжина однієї
клітинки дорівнює 1 см.
1) - 6 2/3 - 8,75 = - 20/3 - 8 3/4 = - 20/3 - 35/4 = - (80/12 + 105/12) = - 185/12 = - 15 5/12
2) - 3 7/15 + 0,4 - 6 1/3 = - 3 7/15 + 2/5 - 6 1/3 = - 52/15 + 2/5 - 19/3 = - 52/15 + 6/15 - 95/15 = - 1/15 * ( 52 - 6 + 95) = - 1/15 * 151 = - 151/15 = - 10 1/15
3)-1,5 - 3 4/5 - 8 3/20 = - 1 1/2 - 3 4/5 - 8 3/20 = - 3/2 - 19/5 - 163/20 = - 30/20 - 76/20 - 163/20 = - 1/20 * (30 + 76 + 163) = - 1/20 * 269 = - 269/20 = -13 9/20
4) - 2 5/8 - 9,25 - 3/4 = - 2,625 - 9,25 - 0,75 = - (2,625 + 9,25 + 0,75) = - 12,625 = 12 5/8
ответ: Длина окружности с радиусом R=1 cм равна l=2ПR=2П·1=2П
Пошаговое объяснение: ABCD - трапеция, AB=CD ,
ABCD описана около окружности с центром в точке О ⇒ сумма боковых сторон равна сумме оснований: AB+CD=BC+AD.
Средняя линия трапеции m=(BC+AD):2=4 см ⇒ BC+AD=8 см.
АВ+CD=8 cм
Так как АВ=СD , то АВ=CD=8:2=4 cм.
Опустим перпендикуляр ВН на основание AD.
Рам. ΔАВН. ∠АНВ=90°, ∠ВАН=30° (по условию).
ВН - катет, лежащий против угла в 30° ⇒ он равен половине гипотенузы: ВН=0,5·АВ=0,5·4=2 см.
Но катет ВН является высотой h трапеции. А высота трапеции, описанной
около окружности равна диаметру этой окружности:
ВН=2R=2 cм ⇒ R=2:2=1 cм .
Длина окружности с радиусом R=1 cм равна l=2ПR=2П·1=2П