площадь круга описывающий правильный шестиугольник равна S=πR²,
площадь вписанного круга равна s=πr².
R- описанной окружности равен стороне вписанного шестиугольника: R=a, чтобы вычислить радиус вписанной окружности, соедините две смежные вершины шестиугольника с центром окружности. Получили равносторонний треугольник , в котором высота, опущенная из вершины, являющейся центром окружностей, на сторону шестиугольника является радиусом вписанной окружности.Вычислим этот радиус.
r²=a²-(a/2)²= a²-a²/4=a²·3/4=( a√3)/2 или r=a·sin60=(a·√3)/2
площадь кольца равна разности площади круга описанной окружности и площади круга вписанной окружности: πa²-π·((a√3)/2)²= πa²-π·3a²/4=π(a²-3a²/4)=πa²/4
площадь круга описывающий правильный шестиугольник равна S=πR²,
площадь вписанного круга равна s=πr².
R- описанной окружности равен стороне вписанного шестиугольника: R=a, чтобы вычислить радиус вписанной окружности, соедините две смежные вершины шестиугольника с центром окружности. Получили равносторонний треугольник , в котором высота, опущенная из вершины, являющейся центром окружностей, на сторону шестиугольника является радиусом вписанной окружности.Вычислим этот радиус.
r²=a²-(a/2)²= a²-a²/4=a²·3/4=( a√3)/2 или r=a·sin60=(a·√3)/2
площадь кольца равна разности площади круга описанной окружности и площади круга вписанной окружности: πa²-π·((a√3)/2)²= πa²-π·3a²/4=π(a²-3a²/4)=πa²/4
ответ:πa²/4
Подробнее - на -
Пошаговое объяснение:
120 * 86 60*86 12*86
= =
-12 * (- 8целых6/10) = -12 * (- 86/10) = 10 5 1
= 12*86 = 1032
1032 94 10320 -94
- = =
1032 - 9.4 = 1032 - 9целых4/10 = 1 10 10
= 10226/10 = 5113/5