Пусть производительность первого рабочего x (1/ч) , второго -- y (1/ч) . Тогда первому рабочему потребуется на выполнение всего задания (1/x) часов, второму -- (1/y) часов. Записываем первое уравнение: (1) 1/y - 1/x = 3. За 4 часа первый рабочий выполнит (4x) задания, второй за 3 часа выполнит (3y) задания. Вместе они выполнят всё задание, т. е. 1. Имеем второе уравнение: (2) 4x + 3y = 1 => y = (1 - 4x)/3 Подставляя в (1), получим 3/(1-4x) - 1/x = 3. Умножаем на x(1-4x): 3x - (1-4x) = 3x(1-4x); 7x -1 = 3x - 12x^2; 12x^2 + 4x - 1 = 0. Нас интересует только положительное значение x, поэтому x = (-2 + sqrt(2^2+12))/12 = (-2+4)/12 = 1/6. Значит, первому рабочему на выполнение всего задания потребуется 1/x = 6 часов.
Объем V куба (гексаэдра) со стороной a равен величине этой стороны, возведенной в третью степень: V = a3. Объем куба находят перемножая площади квадрата a2, лежащего в его основании на высоту куба a.
Поскольку объем куба вычисляют как третью степень его стороны, возведение в третью степень называют возведением в куб, а получаемый при этом результат — кубом исходной величины.
Объем куба можно также выразить через величину его большой диагонали D и дианонали d его квадратной грани:
V = a3 = d3/2·√(2) = d3/3·√(3).
Площадь поверхности S куба со стороной a равна сумме площадей шести его квадратных граней, каждая из которых равна a2. Таким образом, плошадь куба S = 6a2.
Суммарная длина ребер куба L = 12a, поскольку у куба 12 ребер, каждое длиной a.
Тогда первому рабочему потребуется на выполнение всего задания (1/x) часов, второму -- (1/y) часов. Записываем первое уравнение:
(1) 1/y - 1/x = 3.
За 4 часа первый рабочий выполнит (4x) задания, второй за 3 часа выполнит (3y) задания. Вместе они выполнят всё задание, т. е. 1. Имеем второе уравнение:
(2) 4x + 3y = 1 => y = (1 - 4x)/3
Подставляя в (1), получим
3/(1-4x) - 1/x = 3. Умножаем на x(1-4x):
3x - (1-4x) = 3x(1-4x); 7x -1 = 3x - 12x^2;
12x^2 + 4x - 1 = 0. Нас интересует только положительное значение x, поэтому
x = (-2 + sqrt(2^2+12))/12 = (-2+4)/12 = 1/6.
Значит, первому рабочему на выполнение всего задания потребуется 1/x = 6 часов.
Поскольку объем куба вычисляют как третью степень его стороны, возведение в третью степень называют возведением в куб, а получаемый при этом результат — кубом исходной величины.
Объем куба можно также выразить через величину его большой диагонали D и дианонали d его квадратной грани:
V = a3 = d3/2·√(2) = d3/3·√(3).
Площадь поверхности S куба со стороной a равна сумме площадей шести его квадратных граней, каждая из которых равна a2. Таким образом, плошадь куба S = 6a2.
Суммарная длина ребер куба L = 12a, поскольку у куба 12 ребер, каждое длиной a.