1. Имеется три партии ламп по 100, 200 и 300 штук. В первой партии 80% ламп с
продолжительностью работы более 1 000 часов, во второй - 75%, в третьей – 60%.
Какова вероятность, что случайно выбранная лампа, проработавшая более 1000 часов, была взята из второй партии?
2. Получить ряд распределения для случайной величины – числа попаданий в цель при двух выстрелах, если вероятность попадания в цель равна 0.8 при одном выстреле. Вычислить математическое ожидание, дисперсию и среднее квадратическое отклонение этой случайной величины. Построить график функции распределения и показать на нем математическое ожидание и среднее квадратическое отклонение.
Пошаговое объяснение:
1. Имеется три партии ламп по 100, 200 и 300 штук. В первой партии 80% ламп с
продолжительностью работы более 1 000 часов, во второй - 75%, в третьей – 60%.
Какова вероятность, что случайно выбранная лампа, проработавшая более 1000 часов, была взята из второй партии?
2. Получить ряд распределения для случайной величины – числа попаданий в цель при двух выстрелах, если вероятность попадания в цель равна 0.8 при одном выстреле. Вычислить математическое ожидание, дисперсию и среднее квадратическое отклонение этой случайной величины. Построить график функции распределения и показать на нем математическое ожидание и среднее квадратическое отклонение.
1) - 6 2/3 - 8,75 = - 20/3 - 8 3/4 = - 20/3 - 35/4 = - (80/12 + 105/12) = - 185/12 = - 15 5/12
2) - 3 7/15 + 0,4 - 6 1/3 = - 3 7/15 + 2/5 - 6 1/3 = - 52/15 + 2/5 - 19/3 = - 52/15 + 6/15 - 95/15 = - 1/15 * ( 52 - 6 + 95) = - 1/15 * 151 = - 151/15 = - 10 1/15
3)-1,5 - 3 4/5 - 8 3/20 = - 1 1/2 - 3 4/5 - 8 3/20 = - 3/2 - 19/5 - 163/20 = - 30/20 - 76/20 - 163/20 = - 1/20 * (30 + 76 + 163) = - 1/20 * 269 = - 269/20 = -13 9/20
4) - 2 5/8 - 9,25 - 3/4 = - 2,625 - 9,25 - 0,75 = - (2,625 + 9,25 + 0,75) = - 12,625 = 12 5/8
1. Имеется три партии ламп по 100, 200 и 300 штук. В первой партии 80% ламп с
продолжительностью работы более 1 000 часов, во второй - 75%, в третьей – 60%.
Какова вероятность, что случайно выбранная лампа, проработавшая более 1000 часов, была взята из второй партии?
2. Получить ряд распределения для случайной величины – числа попаданий в цель при двух выстрелах, если вероятность попадания в цель равна 0.8 при одном выстреле. Вычислить математическое ожидание, дисперсию и среднее квадратическое отклонение этой случайной величины. Построить график функции распределения и показать на нем математическое ожидание и среднее квадратическое отклонение.
Пошаговое объяснение:
1. Имеется три партии ламп по 100, 200 и 300 штук. В первой партии 80% ламп с
продолжительностью работы более 1 000 часов, во второй - 75%, в третьей – 60%.
Какова вероятность, что случайно выбранная лампа, проработавшая более 1000 часов, была взята из второй партии?
2. Получить ряд распределения для случайной величины – числа попаданий в цель при двух выстрелах, если вероятность попадания в цель равна 0.8 при одном выстреле. Вычислить математическое ожидание, дисперсию и среднее квадратическое отклонение этой случайной величины. Построить график функции распределения и показать на нем математическое ожидание и среднее квадратическое отклонение.