11 , прямые ad и bc пересекаются в точке p (6; 6). уравнение прямой bc : y=mx+3. площадь треугольника abp равна 27. длина bp =√45, длина bo=3, b(0; 3), c(-6; 0). найти площадь четырехугольника bodp, если o (0; 0)
попробуем построить, ну, например для 4-х точек (см.рис).
Прямая проходит через каждые две точки. Т.е. нужно посчитать сколько различных пар точек можно выбрать из 4-х точек. Это - известная в комбинаторике формула для подсчета числа сочетаний (именно сочетаний, а не размещений, потому, что прямая АВ и прямая ВА - одна и таже прямая). Подсчитаем для 4-х точек:
C₄²=4!/(4-2)!4!=4!/(2!*2!)=3*4/2=6;
и действительно видим 6 прямых. Тогда для 20 точек:
Подкоренное выражение не должно быть меньше нуля и х не может быть равным нулю
Решим уравнение
Очевидно, что надо решить верхнюю часть (нижнее дает нам ограничение что х не может быть равен 0)
То есть решение х=-1
Проверим участок до -1, возьмем к примеру х=-2 (-2+1)/(-2)=0,5 >0 То есть этот участок годен.
Теперь возьмем значение со второго участка х>0, например х=1: (1+1) /1=2 >0 Тоже годен Остался участок от -1 до 0Возьмем к примеру -0,5 (-0,5+1)/(-0,5)=0,5/(-0,5)=-1 То есть участок не годен. И помним что
190 прямых
Пошаговое объяснение:
попробуем построить, ну, например для 4-х точек (см.рис).
Прямая проходит через каждые две точки. Т.е. нужно посчитать сколько различных пар точек можно выбрать из 4-х точек. Это - известная в комбинаторике формула для подсчета числа сочетаний (именно сочетаний, а не размещений, потому, что прямая АВ и прямая ВА - одна и таже прямая). Подсчитаем для 4-х точек:
C₄²=4!/(4-2)!4!=4!/(2!*2!)=3*4/2=6;
и действительно видим 6 прямых. Тогда для 20 точек:
C₂₀²=20!/((20-2)!2!)=19*20/2=190.
Подкоренное выражение не должно быть меньше нуля и х не может быть равным нулю
Решим уравнение
Очевидно, что надо решить верхнюю часть (нижнее дает нам ограничение что х не может быть равен 0)
То есть решение х=-1
Проверим участок до -1, возьмем к примеру х=-2
(-2+1)/(-2)=0,5 >0
То есть этот участок годен.
Теперь возьмем значение со второго участка х>0, например х=1:
(1+1) /1=2 >0
Тоже годен
Остался участок от -1 до 0Возьмем к примеру -0,5
(-0,5+1)/(-0,5)=0,5/(-0,5)=-1
То есть участок не годен. И помним что