10. сумма цифр двузначного числа 3. Если вы введете цифру 1 между цифрами этого числа, то получите число, которое больше исходного на 190. найдите этот номер.
Число двузначное. Пусть его цифры a - цифра десятков и b - цифра единиц. По условию, .
Поскольку a и b целые и не меньше нуля, то можно попробовать подобрать.
1) не подходят, т.к. число (вставили между а и b цифру 1, получили a1b) в действительности двузначное, и
2) также не подходят, т.к. (здесь не произведения чисел, а десятичная запись)
3) . Проверяем: (верно, т.е. совпадает с условием). Тогда задуманное двузначное число равно 21, и, вставляя число 1 между 2 и 1, получаем число 211.
На этом, казалось бы все, но осталась еще одна возможная комбинация: . Вообще говоря, пока ничего не мешает и для нее выполняться условиям задачи. Что ж, проверяем: . Ан нет, для этой комбинации выполняются не все условия задачи.
Поскольку мы перебрали все возможные комбинации, то нам ничего не остается, как сказать, что задача имеет ровно одно решение: .
Классический метод
Этот метод стандартный, но он общий, и очень удобный (просто нам повезло с данными)
Число двузначное. Пусть его цифры a - цифра десятков и b - цифра единиц. Тогда искомое число равно (ВНИМАНИЕ! Здесь 10a уже обозначает умножение числа 10 на число a, здесь и далее будем подразумевать именно это). По условию, . По другому условию задачи, если мы вставим 1 между цифрами a и b, то получим число . По условию, вычитая из этого числа искомое двузначное получаем:
. Отсюда можно выразить a:
Подставляя a в уравнение , находим, что
Получаем, что искомое двузначное число равно 21.
Эпилог
Двумя методами получили одинаковый результат, следовательно, с большой вероятностью все сделано верно.
Оригинальный метод:
Число двузначное. Пусть его цифры a - цифра десятков и b - цифра единиц. По условию, .
Поскольку a и b целые и не меньше нуля, то можно попробовать подобрать.
1) не подходят, т.к. число (вставили между а и b цифру 1, получили a1b) в действительности двузначное, и
2) также не подходят, т.к. (здесь не произведения чисел, а десятичная запись)
3) . Проверяем: (верно, т.е. совпадает с условием). Тогда задуманное двузначное число равно 21, и, вставляя число 1 между 2 и 1, получаем число 211.
На этом, казалось бы все, но осталась еще одна возможная комбинация: . Вообще говоря, пока ничего не мешает и для нее выполняться условиям задачи. Что ж, проверяем: . Ан нет, для этой комбинации выполняются не все условия задачи.
Поскольку мы перебрали все возможные комбинации, то нам ничего не остается, как сказать, что задача имеет ровно одно решение: .
Классический метод
Этот метод стандартный, но он общий, и очень удобный (просто нам повезло с данными)
Число двузначное. Пусть его цифры a - цифра десятков и b - цифра единиц. Тогда искомое число равно (ВНИМАНИЕ! Здесь 10a уже обозначает умножение числа 10 на число a, здесь и далее будем подразумевать именно это). По условию, . По другому условию задачи, если мы вставим 1 между цифрами a и b, то получим число . По условию, вычитая из этого числа искомое двузначное получаем:
. Отсюда можно выразить a:
Подставляя a в уравнение , находим, что
Получаем, что искомое двузначное число равно 21.
Эпилог
Двумя методами получили одинаковый результат, следовательно, с большой вероятностью все сделано верно.