1. вас пригласили на телевизионную игру колесо фортуны. колесо электронным образом с двух кнопок, которые сообщают колесу сильное в или слабое н вращение. само колесо разделено на равные области – белую б и красную к. вам сообщили, что в белой области колесо останавливается с вероятностью 0,3, а в красной – 0.7. плата, которую вы получаете за игру, равна (в долл.) следующему. б к н 800 200 в -2500 1000 изобразите соответствующее дерево решений.
Сравнение дробей с разными знаменателями можно свести к сравнению дробей с одинаковыми знаменателями. Для этого лишь нужно сравниваемые обыкновенные дроби привести к общему знаменателю. Итак, чтобы сравнить две дроби с разными знаменателями, нужно:
1. Привести дроби к общему знаменателю;
2. Сравнить полученные дроби с одинаковыми знаменателями.
Правило сравнения дробей с одинаковыми числителями: из двух дробей с одинаковыми числителями больше та, у которой меньше знаменатель, и меньше та дробь, знаменатель которой больше.
Сравнение обыкновенной дроби с натуральным числом сводится к сравнению двух дробей, если число записать в виде дроби со знаменателем 1 ( Например, число 9 можно представить как дробь 9/1 и т.д.)
Аня и Боря любят играть в разноцветные кубики, причем у каждого из них свой набор и в каждом наборе все кубики различны по цвету. Однажды дети заинтересовались, сколько существуют цветов таких, что кубики каждого цвета присутствуют в обоих наборах. Для этого они занумеровали все цвета случайными числами от 0 до 108. На этом их энтузиазм иссяк, поэтому вам предлагается им в оставшейся части.
В первой строке входных данных записаны числа N и M — число кубиков у Ани и Бори. В следующих N строках заданы номера цветов кубиков Ани. В последних M строках номера цветов Бори.
Найдите три множества: номера цветов кубиков, которые есть в обоих наборах; номера цветов кубиков, которые есть только у Ани и номера цветов кубиков, которые есть только у Бори. Для каждого из множеств выведите сначала количество элементов в нем, а затем сами элементы, отсортированные по возрастанию.