1. В первом ящике находятся шары с номерами: 1, 2, 3, 4. Во втором ящике – шары с номерами: 5, 6, 7, 8. Из каждого ящика вынули по одному шару. Найти вероятность того, что сумма номеров вынутых шаров равна 10.
2. В группе 12 юношей и 18 девушек. Нужно выбрать делегацию из двух человек. Найти вероятность того, что будут выбраны двое юношей.
преобразуем :
a) sin(5пи/14)*cos(пи/7)+cos(5пи/14)*sin(пи/7) = sin(5пи/14 + пи/7)= sin(пи/2) = 1
б) cos 78 градусов cos 18 градусов + sin 78 грудусов sin 18 градусов = cos(78 градусов - 18 градусов) = cos(60 градусов) = 1/2.
2)
У выражения
а) sin альфа cos бета - sin (альфа - бета)
sin (альфа - бета) = sin (альфа) * cos (бета) - cos (альфа) * sin (бета) , тогда получим :
sin альфа cos бета - sin (альфа - бета) = sin альфа * cos бета - sin (альфа) * cos (бета) - cos (альфа) * sin (бета) = - cos (альфа) * sin (бета) , поэтому :
sin альфа cos бета - sin (альфа - бета) = - cos (альфа) * sin (бета) .
б) cos ( пи\3 + x) + (корень из 3)\2 sin x - исходное выражение, преобразуем его :
cos ( пи\3 + x) = cos ( пи\3) *cos (х) - sin( пи\3) * sin(x) = cos (х) /2 - (корень из 3)\2 *sin(x) , тогда получим :
cos ( пи\3 + x) + (корень из 3)\2 sin x = cos (х) /2 - (корень из 3)\2 *sin(x) + (корень из 3)\2 sin x = cos (х) /2.
3) Докажите тождество :
cos (альфа+бета) - cos (альфа- бета) = - 2 sin альфа sin бета - исходное выражение, которое преобразуем ,
используя формулы сложения тригонометричесикх функций:
cos (альфа+бета) = cos (альфа) *cos (бета) - sin альфа sin бета,
cos (альфа-бета) = cos (альфа) *cos (бета) + sin альфа sin бета, суммируя выражения получим :
cos (альфа+бета) - cos (альфа- бета) = cos (альфа) *cos (бета) - sin альфа sin бета - cos (альфа) *cos (бета) - sin альфа sin бета =
= - 2 sin альфа sin бета.
что требовалось доказать .
4) решите уравнение
cos 4x cos x + sin 4 x sinx=0
Используя те же формулы, получим :
cos 4x cos x + sin 4 x sinx = cos (4x - x)= cos 3x, тогда
cos 3x = 0, при
3x = (( 2*n +1 )/2) * пи, отсюда :
x = (( 2*n +1 )/6) * пи
Пошаговое объяснение:
1) 24 : 3 = 8 (км/ч) - скорость лыжника.
ответ: 8 км/ч.
2) 80 · 4 = 320 (км) проехал мотоциклист.
ответ: 320 км.
3) 28 : 7 = 4 (ч) - была в пути лодка.
ответ: 4 ч.
4) 12 : 4 = 3 (м/с) - скорость мышки.
ответ: 3 м/с.
5) 15 : 5 = 3 (ч) - пройдет пешеход.
ответ: за 3 ч.
6) 33 : 3 = 11 (км/ч) - скорость велосипедиста.
ответ: 11 км/ч.
Формула s = v · t (s - путь, v - скорость, t - время) подходит для задачи 2.
Формула t = s / v (s - путь, v - скорость, t - время) подходит для задач 3 и 5.
Формула v = s / t (s - путь, v - скорость, t - время) подходит для задач 1, 4 и 6.