1. Ученик 10 класса Петя Иванов на уроке физкультуры сдаёт норматив по метанию
гранаты. После первого броска результат оказался неудовлетворительным. Во
второй раз Петя бросил гранату с той же начальной скоростью, но под углом в 2
раза большим первоначального, однако дальность полёта не изменилась.
Определите, под каким углом была брошена граната в первый раз и во сколько раз
отличались максимальные высоты подъёма гранаты в описанных двух случаях.
18 см
Пошаговое объяснение:
1) Если через две названные точки, являющиеся серединами диагоналей трапеции, провести линию, пересекающую боковые стороны трапеции, то получим 2 треугольника, каждый из которых опирается на сторону 8 см, и в каждом из которых продолжение линии за стороной, являющейся диагональю трапеции, является средней линий, т.к. проведенная линия параллельна основания трапеции.
2) Средняя линия равна 1/2 той стороны, которой она параллельна.
Значит, средняя линия каждого из треугольников равна:
8 : 2 = 4 см.
3) Теперь можно рассчитать среднюю линию трапеции.
Она состоит из 3-х отрезков:
4 см (средняя линия первого треугольника) + 5 см (расстояние между точками, являющими серединами диагоналей трапеции) + 4 см (средняя линия второго треугольника) = 13 см
3) Средняя линия трапеции равна полусумме её оснований. Составим уравнение и решим его:
(8+х) / 2 = 13, где х - второе основание, которое нам надо найти.
8+х = 26,
х = 18 см
ответ: 18 см.