1. Точка М (-2; 3; -7) находится от плоскости ХОУ на расстоянии равном…
2. Точка A (-1;2;-3) находится от плоскости УОZ на расстоянии равном…
3. На прямой, перпендикулярной оси абсцисс, взяты две точки. У одной абсцисса равна -2. Чему равна абсцисса другой точки?
4. На прямой, параллельной оси ординат, взяты две точки. Абсцисса одной из них равна 5. Чему равна ордината другой точки?
5. Из точки A(-1, 8) опущен перпендикуляр на ось абсцисс. Найдите координаты его основания.
6. Через точку B(5, -4) проведена прямая, параллельная оси абсцисс. Найдите координаты ее точки пересечения с осью ординат.
7. Найдите координаты середины отрезка CD, если C(0, -9) и D(-5, 16).
8. Найдите геометрическое место точек на координатной плоскости, для которых x=-y.
9. На оcи ординат найдите точку, одинаково удаленную от точек E(1, 2) и F(3, 4).
10. Сколько пар равных векторов определяют вершины квадрата?
Пошаговое объяснение:
1. Расстояние до плоскости ХОY показывает координата Z=-7;
2. Расстояние до плоскости YOZ показывает X=-1
3. Тоже -2
4. Параллельная оси ординат - это тоже самое, что перпендикулярная оси абцисс. Поэтому 5.
5. (-1,0), т.к. точки лежащие на оси абцисс имеют ординату =0
6. -4. Прямая параллельная абциссе - ордината или координата Y
7. 0.5*CD=0.5*({0,-9}+{-5,16})=0.5*{-5,7}={-2.5,3.5}
8. Биссектриса 2 и 4 координатных углов.
9. Это середина отрезка
0.5*EF=0.5*({1,2}+{3,4})=0.5*{4,6}={2,3}
10. Ни одного. Т.к. Векторы равны, если они совпадают по длине и направлению. Радиус векторы к вершинам квадрата не равны друг другу.
Мб имеется ввиду 2, в смысле сколько векторов можно сделать по сторонам квадрата. Но это не определяет сам квадрат, т.к. векторы не имеют точки приложения, только направление и длину, поэтому в этой постановке задача кажется не корректной.
Еще можно "натянуть" квадрат на два вектора, но они будут перпендикулярны и не равны и тем более не парны