1. Подбрасывают игральный кубик с числами 1, 2, 3, 4, 5, 6, отмеченными точками на его гранях Какие Элементарные события благоприятствуют событию: а) выпало больше 4-х очков
б) выпало нечётное число очков
в) выпало или 3, или 4 очка
2. Для каждого события укажите, сколько элементарных событий у тебя получилось.
ответ:
пошаговое объяснение:
возьмем какую-либо вершину. просто выбрали любую. теперь "идем" по ребрам графа, не проходя по каждому ребру более 1 раза. поскольку циклов нет, рано или поздно мы "" в какую-нибудь вершину, у которой только 1 ребро, по которому мы в нее зашли. заметим, что тогда ее степень равна 1. возьмем и выкинем эту вершину и ее единственное ребро из графа. теперь кол-во вершин в графе - n-1, а ребер m-1 (m - кол-во ребер в изначальном графе). при этом связности мы не испортили, т.к. у нее было только одно ребро, которое мы выкинули с этой же вершиной!
проделаем ту же операцию. таким образом мы уменьшаем кол-во ребер и вершин каждым шагом на 1. рассмотрим граф, в котором осталось 2 вершины. одна из этих вершин имеет степень 1. значит и вторая тоже (при условии, что нет двойных ребер, но граф связен, поэтому их нет). уберем последнюю "единичную" вершину. у нас осталась одна вершина и ни одного ребра. а значит вершин изначально было на 1 больше, чем ребер. доказано.
p.s.: где достал(а)? какой город? )
подробнее - на -
Площадь боковой поверхности - 84 см²; площадь полной поверхности 12(√3 + 7) ≈ 104,78 см²
Пошаговое объяснение:
1) Площадь одного основания s найдём как площадь двух треугольников со сторонами 3 и 4 см (то есть рассматриваем площадь параллелограмма как сумму площадей двух равных треугольников):
s = 2 · (3 · 4 · sin 60° / 2) = 12 · √3/2 = 6√3 см².
В прямом параллелепипеде таких оснований 2.
Соответственно площадь двух оснований равна произведению площади одного основания s на 2:
S осн = s · 2 = 6√3 · 2 = 12 √3 см².
2) Воспользовавшись теоремой косинусов, найдём меньшую диагональ основания d. Меньшей является та диагональ, которая лежит против угла 60°, а большая диагональ лежит против угла 120° (этот угол мы находим, исходя из свойства параллелограмма: сумма углов, прилежащих к одной стороне, равна 180°):
d² = 3² + 4² - 2· 3 · 4 · cos 60° = 9 +16 - 24 · 0,5 = 25 - 12 = 13
d = √13.
3) Меньшей диагонали основания соответствует и меньшая диагональ параллелепипеда, которые вместе с высотой образуют прямоугольный треугольник, в котором диагональ параллелепипеда является гипотенузой. По теореме Пифагора находим высоту H:
H = √(7² - (√13)²) = √(49 - 13) = √36 = 6 см
4) Площадь боковой поверхности S бок прямого параллелепипеда равна произведению периметра его основания P на высоту H:
Р = (3 + 4) · 2 = 7 · 2 = 14 см
S бок = P · H = 14 · 6 = 84 cм²
5) Площадь полной поверхности S прямого параллелепипеда:
S = S осн + S бок = 12√3 + 84 = 12 · (√3 + 7) ≈ 12 · ( 1,732 + 7) = 12 · 8,732 ≈ 104,78 см²
ответ: площадь боковой поверхности - 84 см²; площадь полной поверхности 12(√3 + 7) ≈ 104,78 см²