Свойство касательной и секущей: если из одной точки к окружности проведены касательная и секущая, то квадрат отрезка касательной равен произведению отрезка секущей и ее внешней части.
То есть:
МХ² = МВ · МА
Подставим значения МХ = 2 :
4 = МВ · МА
2. Рассмотрим Окр.О.
МВА - секущая;
СDX - секущая.
Свойство двух секущих: Если из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на ее внешнюю часть равно произведению другой секущей на ее внешнюю часть.
МА · МВ = MD · MC
MA · MB = 4 (п.1)
⇒ MD · MC = 4 (1)
3. МС = CD (по условию)
⇒ MD = 2CD
Заменим в выражении (1) MD на 2CD; MC на CD и получим равенство:
Отрезок секущей СD равен √2 (ед).
Пошаговое объяснение:
Требуется найти отрезок секущей CD.
Дано: Окр.О ∩ Окр.К в точках А и В.
МСD - секущая;
МХ = 2 - касательная;
МС = CD.
Найти: CD.
1. Рассмотрим Окр.К
МХ - касательная;
МВА - секущая.
Свойство касательной и секущей: если из одной точки к окружности проведены касательная и секущая, то квадрат отрезка касательной равен произведению отрезка секущей и ее внешней части.То есть:
МХ² = МВ · МА
Подставим значения МХ = 2 :
4 = МВ · МА
2. Рассмотрим Окр.О.
МВА - секущая;
СDX - секущая.
Свойство двух секущих: Если из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на ее внешнюю часть равно произведению другой секущей на ее внешнюю часть.МА · МВ = MD · MC
MA · MB = 4 (п.1)
⇒ MD · MC = 4 (1)
3. МС = CD (по условию)
⇒ MD = 2CD
Заменим в выражении (1) MD на 2CD; MC на CD и получим равенство:
2CD · CD = 4
CD² = 2
CD = √2 (ед)
Отрезок секущей СD равен √2 (ед).
-с>48-75
-с>-27
с<27 (при умножении на -1 меняем знак неравенства)
2)Проверим. Больше корня число 28 и 30
75-28>48 75-30>48
47>48 – не верно 45>48 – не верно
Возьмем число меньше корня 26 и 20
75-26>48 75-20>48
49>48 55>48 – верные неравенства
1) a+44<91
а<91-44
а<47
2) Числа больше корня 49 и 50
49+44<91 и 50+44<91
93<91 и 94<91 - неравенства не верны
Числа меньше корня 45 и 40
45+44<91 и 40+44<91
89<91 и 84<91 - неравенства верны