1. Найти число правильных дробей равных 0,5, вида , таких, что а s 20, ь? b = 20 и каждое число в записи этих дробей используется не более одного раза. 1) 4 2) 6 3) 7 4) 5
Обозначим слона как a а его номер a1 . Значит у нас имеется слоны А1 А2 А3 А4 А5 а6 А7 а8 вес всех этих слонов равен А1+ А2+А3+А4+А5+А6+А7+ А8 РОВНО К
Пошаговое объяснение:А3 РОВНО А1 +А2
А4 =А2+ А1 +А2
А5 = 3А2+2А1
А6= 5А2+3А1
А7= 8А2+5А1
А8 =13А2+8А1
Откуда
А1+А2+А3+А4+А5+А6+А7+А8=33А2+21А1
После чего делим их на три кучки в Кучке С будут слоны А7,А5,А6 , в Кучке В будут слоны А3, А4, А8 . Можно заметить что слон А3 равен маме слонов А1 +А2. Поэтому можно сначала взвесить кучки А и В а потом в Кучке В заменить слона А3 на слонов А1 + А2. И при этом если кучки равны значит никто не похудел а если какая то меньше значит там какой-то слон похудел
Ошибаются второй и третий, а первый оказался прав, так как он говорит, что королеве больше 43 лет, значит ей либо 44 лет, либо больше. Поскольку второй и третий ошибаются, значит королеве не больше 44 и не больше 45, а значит ей 44.
Если бы первый и третий ошибались, в второй говорил правду, то получалось бы всё нелогично, так как по этой логике первый говорит неправду, значит королеве не больше 43, но согласно высказыванию второго (который в данном случае прав) ей больше 44, и получается противоречие. Аналогично можно опровергнуть вариант, в котором 1 и 2 говорят неправду, а 3 правду. Остаётся только последний вариант, в котором первый говорит правду, а двое других – неправду, и который оказался верным
Обозначим слона как a а его номер a1 . Значит у нас имеется слоны А1 А2 А3 А4 А5 а6 А7 а8 вес всех этих слонов равен А1+ А2+А3+А4+А5+А6+А7+ А8 РОВНО К
Пошаговое объяснение:А3 РОВНО А1 +А2
А4 =А2+ А1 +А2
А5 = 3А2+2А1
А6= 5А2+3А1
А7= 8А2+5А1
А8 =13А2+8А1
Откуда
А1+А2+А3+А4+А5+А6+А7+А8=33А2+21А1
После чего делим их на три кучки в Кучке С будут слоны А7,А5,А6 , в Кучке В будут слоны А3, А4, А8 . Можно заметить что слон А3 равен маме слонов А1 +А2. Поэтому можно сначала взвесить кучки А и В а потом в Кучке В заменить слона А3 на слонов А1 + А2. И при этом если кучки равны значит никто не похудел а если какая то меньше значит там какой-то слон похудел
44 года ей было.
Пошаговое объяснение:
Ошибаются второй и третий, а первый оказался прав, так как он говорит, что королеве больше 43 лет, значит ей либо 44 лет, либо больше. Поскольку второй и третий ошибаются, значит королеве не больше 44 и не больше 45, а значит ей 44.
Если бы первый и третий ошибались, в второй говорил правду, то получалось бы всё нелогично, так как по этой логике первый говорит неправду, значит королеве не больше 43, но согласно высказыванию второго (который в данном случае прав) ей больше 44, и получается противоречие. Аналогично можно опровергнуть вариант, в котором 1 и 2 говорят неправду, а 3 правду. Остаётся только последний вариант, в котором первый говорит правду, а двое других – неправду, и который оказался верным