1) наибольшая диагональ правильной шестиугольной призмы равна 12 см, она наклонена к плоскости основания под углом 60°. вычислить длину стороны основания призмы. 2) через вершину и диагональ основания правильной четырехугольной пирамиды проведено сечение. вычислительной его площадь, если сторона основания равна 8 см, а боковое ребро пирамиды 5√2 см.
Если угол между диагональю и ее проекцией равен 60°, то угол между диагональю и боковым ребром равен 30°. Катет, противолежащий углу в 30° равен половине гипотенузы( диагональ призмы). Половина от 12 - это 6 см. Это диагональ шестиугольника. Она является диаметром описанной окружности, значит радиус этой окружности 3 см. А сторона правильного шестиугольника равна радиусу описанной окружности, т.е. 3 см.