1. как называется отрезок, соединяющий две противолежащие вершины четырехугольника. 2. как называется отрезок, соединяющий две соседние вершины четырех- угольника. 3. какой четырехугольник называют трапецией? какая трапеция называется прямоугольной? равнобедренной? 4. точка пересечения диагоналей четырехугольника является серединой каждой из них. как называется такой четырех угольник (если диагонали не равны между собой). 5. две соседние стороны параллелограмма равны и образуют прямой угол. как называется такой параллелограмм. 6. каким свойством диагонали прямоугольника? параллелограмма? ромба? квадрата? 7. как найти периметр ромба? прямоугольника? параллелограмма? квадрата? 8. всякий ли четырехугольник, у которого есть две параллельные стороны, является трапецией. 9. что называют перпендикуляром к прямой, наклонной, проекцией наклонной? 10. как называются стороны в прямоугольном треугольнике, которые образуют прямой угол? как называется сторона, лежащая напротив прямого угла? 11. запишите теорему пифагора для прямоугольного треугольника мкр, у которого ð р прямой.
1) 1/15 и 1/5 * 3 = 3/15; 1/15 & 3/15
2) 2/3 * 4 = 8/12 и 3/4 * 3 = 9/12; 8/12 & 9/12 ( знаменатели взаимно-простые, поэтому просто перемножили )
3) 1/2 * 7 = 7/14 и 3/7 * 2 = 6/14; 7/14 & 6/14 ( знаменатели взаимно-простые, поэтому просто перемножили )
4) 3/5 * 6 = 18/30 и 5/6 * 5 = 25/30; 18/30 & 25/30 ( знаменатели взаимно-простые, поэтому просто перемножили )
5) 4/15 * 11 = 44/165 и 7/11 * 15 = 105/165; 44/165 & 105/165 ( эти знаменатели тоже взаимно-простые, поэтому просто перемножили )
Пошаговое объяснение:
Я смог
Дано: y = (x²-6x+4)/(3x-2),
ИССЛЕДОВАНИЕ.
1. Область определения: D(y)= X≠ 2/3 , X∈(-∞;2/3)∪(2/3;+∞). Не допускаем деления на 0 в знаменателе.
2. Разрыв II-го рода при Х = 1. Вертикальных асимптота - Х = 2/3.
3. Наклонная асимптота: k = lim(+∞)Y(x0/x = 1/3
b = -16/9 и
y(x) = x -16/9 - наклонная асимптота.
4. Нули функции, пересечение с осью ОУ.
y(0) = 4 : (-2) = -2
Пересечение с осью ОХ - решаем квадратное уравнение в числителе.
х1 = 5,236 и х2 = 0,7639, D = 20 и √20 = 2√5
5. Интервалы знакопостоянства.
Отрицательна: Y(x)<0 - X∈(-∞;2/3)∪(0.76;5.2).
Положительна: Y>0 - X∈(5.2;+∞;)
6. Проверка на чётность. Есть сдвиг по оси ОХ - нет симметрии ни осевой ни центральной.
Функция общего фида - ни чётная, ни нечётная: Y(-x) ≠ -Y(x) ,
Y(-x)= (x^2+6*x+4)/(-3*x+2).
7. Поиск экстремумов по первой производной.
y'(x) =(-3*x² +18*x +2*(x-3)(3x-2)-12 /(3x-2)² = 0.
x*(3*x-4) =0
x1 = 0, x2 = 4/3 - точки экстремумов.
8. Локальный максимум: y(0) = -2, минимум: y(4/3) = -1.11.
9. Интервалы монотонности.
Возрастает - X∈(-∞;0)∪(4/3;+∞). Убывает: X∈(0;2/3)∪(3/2;4/3).
10. Поиск перегибов по второй производной.
y"(x) = 8/(3x-2)³ = 0
Точки перегиба нет, кроме разрыва при Х = 0.
11. Вогнутая - "ложка"- X∈(2/3;+∞;), выпуклая - "горка" - X∈(-∞;2/3);
12. Область значений. E(y) - y∈(-∞;+∞).
13. График функции на рисунке в приложении.