1. 28 и -19 2. 135 и -165
3. -250 и 0
4. -42 и -16.
5.
2. Вычислите:
1. -68 + 74
2. -47 – ( - 25)
3. 1272 : (-12)
4. -24 • (-13)
5. 360 : 12 • (-6).
6.
3. Вычислите наиболее простым
1. -39 • 91 +29 • 91
2. - 12 • (-24) - 12 • 14
3. (34 - 45) - ((-34) - 45)
4. - 138 + 44 – ( -138 +24).
5.
4. Найдите значение выражения:
1. (-240 : 5 - (- 32 • 4)) : (-16 )
2. -420 : (-14 – 7) • 3 – 7
5.Изобразите на координатной оси точки А(6), B(- 5), C(2), D(-9). Найдите расстояние CD, AD, BC
6. Решите уравнение х • (-15) = 135
1) На координатном луче отмечаем точки (-7) и (17). Затем отмечаем все точки, лежащие между данными и соответствующие целым числам (смотри рис. 1). Считаем их количество. Получается 23.
Второй И еще из результата (24) вычитаем 1, т.к. одну крайнюю точку - (17) - учитывать не нужно..
24-1 = 23
ответ: 23
2) Чертим координатную прямую и отмечаем на ней точки (-17) и (-9). Затем отмечаем все точки между данными, соответствующие целым числам (см. рис. 2). Считаем их количество. Получается 9 чисел.
Либо можно сосчитать так: -9-(-17) = -9+17 = 8 – это количество чисел от (-17) до (-9), не считая (-17).
Убираем еще одно число, т.к. (-9) тоже не нужно учитывать.
8-1 = 7
ответ: 7
3) Кузнечик стартует в точке (-3), а в точке 23 останавливается.
Все целые числа он должен проходит по порядку. Ему необходимо прыгать только вправо. Тогда количество прыжков будет наименьшим. Если он сделает хоть один прыжок назад, это увеличит общее количество прыжков (см. рис. 3).
В этом случае от (-3) до 23 кузнечик сделает 23-(-3)=23+3=26 прыжков.
ответ: 26
4) Чертим числовую прямую. Отмечаем на ней точки, соответствующие целым числам. От точки (5) отсчитываем 19 целых чисел влево, т.к. нужно вычесть 19.
Оказываемся в точке (-14) (см. рис. 4)
ответ: -14
площадь круга описывающий правильный шестиугольник равна S=πR²,
площадь вписанного круга равна s=πr².
R- описанной окружности равен стороне вписанного шестиугольника: R=a, чтобы вычислить радиус вписанной окружности, соедините две смежные вершины шестиугольника с центром окружности. Получили равносторонний треугольник , в котором высота, опущенная из вершины, являющейся центром окружностей, на сторону шестиугольника является радиусом вписанной окружности.Вычислим этот радиус.
r²=a²-(a/2)²= a²-a²/4=a²·3/4=( a√3)/2 или r=a·sin60=(a·√3)/2
площадь кольца равна разности площади круга описанной окружности и площади круга вписанной окружности: πa²-π·((a√3)/2)²= πa²-π·3a²/4=π(a²-3a²/4)=πa²/4
ответ:πa²/4
Подробнее - на -
Пошаговое объяснение: