Рассмотрим трёх подряд стоящих кенгуру с номерами 2 , 3 и 4 .
По условию, если второй кенгуру серый, то кенгуру 3 и 4 не серые ,
так как в любой произвольной тройке встречаются кенгуру всех трёх цветов .
Рассмотрим тройку кенгуру с номерами 3, 4 и 5 . Так как кенгуру 3 и 4 не серые , то пятый кенгуру серый и так далее . Таким образом кенгуру одного цвета образуют арифметическую прогрессию с разностью равной 3 . Пусть второй и 2021 -й кенгуру действительно серые .
Тогда должно выполняться равенство :
2 + 3(n - 1) = 2021 , где n - число кенгуру серого цвета . Отсюда :
3n = 2022 и n = 674 . Допустим что кенгуру под номером 1 красный .
Тогда 1 + 3(n - 1) = 202 , где n - число кенгуру красного цвета до
202 - го номера . Отсюда 3n = 204 и n = 68 .
Красный кенгуру не может быть третьим, так как тогда :
3 + 3(n - 1) = 202
n = 202 : 3 - не натуральное число .
Значит первый кенгуру красный, второй - серый, а третий синий, но тогда для синих кенгуру :
3 + 3(n - 1) = 20
n = 20 : 3 - не натуральное число .
Значит, Боря ошибся с двадцатым кенгуру, не угадав его цвет .
Допустим, что 20 - й кенгуру действительно синий, тогда синим будет и второй кенгуру, так как :
2 + 3(n - 1) = 20
n =21 : 3 = 7 - есть натуральное число .
Тогда Боря ошибся с серыми кенгуру с номерами 2 и 2021 .
Но, по условию он ошибся только один раз. Следовательно, серых и красных кенгуру он угадал правильно и ошибся с номером 20 .
Рассмотрим трёх подряд стоящих кенгуру с номерами 2 , 3 и 4 .
По условию, если второй кенгуру серый, то кенгуру 3 и 4 не серые ,
так как в любой произвольной тройке встречаются кенгуру всех трёх цветов .
Рассмотрим тройку кенгуру с номерами 3, 4 и 5 . Так как кенгуру 3 и 4 не серые , то пятый кенгуру серый и так далее . Таким образом кенгуру одного цвета образуют арифметическую прогрессию с разностью равной 3 . Пусть второй и 2021 -й кенгуру действительно серые .
Тогда должно выполняться равенство :
2 + 3(n - 1) = 2021 , где n - число кенгуру серого цвета . Отсюда :
3n = 2022 и n = 674 . Допустим что кенгуру под номером 1 красный .
Тогда 1 + 3(n - 1) = 202 , где n - число кенгуру красного цвета до
202 - го номера . Отсюда 3n = 204 и n = 68 .
Красный кенгуру не может быть третьим, так как тогда :
3 + 3(n - 1) = 202
n = 202 : 3 - не натуральное число .
Значит первый кенгуру красный, второй - серый, а третий синий, но тогда для синих кенгуру :
3 + 3(n - 1) = 20
n = 20 : 3 - не натуральное число .
Значит, Боря ошибся с двадцатым кенгуру, не угадав его цвет .
Допустим, что 20 - й кенгуру действительно синий, тогда синим будет и второй кенгуру, так как :
2 + 3(n - 1) = 20
n =21 : 3 = 7 - есть натуральное число .
Тогда Боря ошибся с серыми кенгуру с номерами 2 и 2021 .
Но, по условию он ошибся только один раз. Следовательно, серых и красных кенгуру он угадал правильно и ошибся с номером 20 .
ответ : 20
a=-6
Пошаговое объяснение:
(|x|-2)(|x|-4)=2-a
(|x|-2)(|x|-4)-2+a=0
рассмотрим функцию f(x)=(|x|-2)(|x|-4)-2+a
Она непрерывна на всей числовой оси.
f(-x)=(|-x|-2)(|-x|-4)-2+a=(|x|-2)(|x|-4)-2+a=f(x) ⇒ функция четная.
Если четная функция имеет НЕчетное количество корней, то один из них обязательно будет 0.
для уравнения: (|x|-2)(|x|-4)=2-a, при х=0, получаем
(0-2)(0-4)=2-a
-2*(-4)=2-a
8=2-a
a=2-8
a=-6 - при таком значении a уравнение имеет нечетное число различных корней.
Проверим, будет ли их ровно 3:
Действительно, при a=-6 получилось 3 корня!
ответ: a=-6