Обозначим через х1, х2 и х3 массы угля, отпущенные со склада в 1, 2 и 3 дни, соответственно. По условию задачи: в первый день отпустили угля на 12 т меньше, чем во второй день, т. е. , х1=х2-12 далее: в первый день отпустили угля в 1,3 раза меньше, чем во второй день, т. е. , х1=х2/1,3
Приравняем оба условия, найдем значение х2: х2-12=х2/1,3 1,3х2-15,6=х2 0,3х2=15,6 х2=52
находим значение х1: х1=х2-12=52-12=40
далее по условию в третий день отпустили 37,5 % того, что было отпущено за первые два два дня, т. е. х3=(х1+х2)*0,375
Находи х3: х3=(52+40)*0,375=92*0,375=34,5
ответ: в первый день отпустили 40 т угля, во второй - 52 т, в третий - 34,5 т
Обозначим концы средней линии треугольника ABC, параллельной стороне AB, за MN. При этом M - середина стороны AC, а N - середина стороны BC. Длина средней линии треугольника равна половине длины стороны треугольника, которой параллельна эта средняя линия. Т.к. MN || AB, то |MN|=1/2|AB|.
AB²=(1-(-1))²+(0-2)²+(4-3)²=4+4+1=9=3²
Значит, длина стороны AB равна 3, а длина средней линии MN равна 3/2=1,5.
Это простое решение, в котором не нужны даже координаты точки C. Можно решать сложно, определяя координаты точке M и N и вычисляя затем длину отрезка MN по координатам:
Координаты середины отрезка равны полусумме соответствующих координат концов отрезка. Точка M (середина AC): x=(-1+3)/2=1 y=(2+(-2))/2=0 z=(3+1)/2=2
M(1;0;2)
Точка N (середина BC): x=(1+3)/2=2 y=(0+(-2))/2=-1 z=(4+1)/2=5/2
По условию задачи:
в первый день отпустили угля на 12 т меньше, чем во второй день, т. е. , х1=х2-12
далее: в первый день отпустили угля в 1,3 раза меньше, чем во второй день, т. е. , х1=х2/1,3
Приравняем оба условия, найдем значение х2:
х2-12=х2/1,3
1,3х2-15,6=х2
0,3х2=15,6
х2=52
находим значение х1:
х1=х2-12=52-12=40
далее по условию в третий день отпустили 37,5 % того, что было отпущено за первые два два дня, т. е. х3=(х1+х2)*0,375
Находи х3:
х3=(52+40)*0,375=92*0,375=34,5
ответ: в первый день отпустили 40 т угля, во второй - 52 т, в третий - 34,5 т
Длина средней линии треугольника равна половине длины стороны треугольника, которой параллельна эта средняя линия.
Т.к. MN || AB, то |MN|=1/2|AB|.
AB²=(1-(-1))²+(0-2)²+(4-3)²=4+4+1=9=3²
Значит, длина стороны AB равна 3, а длина средней линии MN равна 3/2=1,5.
Это простое решение, в котором не нужны даже координаты точки C.
Можно решать сложно, определяя координаты точке M и N и вычисляя затем длину отрезка MN по координатам:
Координаты середины отрезка равны полусумме соответствующих координат концов отрезка.
Точка M (середина AC):
x=(-1+3)/2=1
y=(2+(-2))/2=0
z=(3+1)/2=2
M(1;0;2)
Точка N (середина BC):
x=(1+3)/2=2
y=(0+(-2))/2=-1
z=(4+1)/2=5/2
N(2;-1;5/2)
MN² = (2-1)²+(-1-0)²+((5/2)-2) = 1+1+1/4 = 9/4 = (3/2)²
|MN| = 3/2
ответ, разумеется, такой же: длина MN равна 1,5.