У трьох пробірках без написів містяться розчини
солей ферум(ІІ) хлориду, ферум(ІІІ) нітрату й
алюміній хлориду. Складіть план розпізнавання цих
речовин за до якісних реакцій на катіони
кожної з них.
Опишіть Складіть рівняння реакцій в молекулярному та
йонному виглядах.
Зробіть висновок:
Якісним реактивом на катіони Fe2+, Fe3+, Al3+ є … .
Доведіть, що видана вам сіль є ферум(ІІІ)
сульфатом.
Для цього проведіть якісні реакції на катіон Fe3+
та аніон SO4 2-
Які ознаки цих реакцій?
Складіть рівняння реакцій в молекулярному та
йонному виглядах.
Зробіть висновок:
Якісним реактивом на катіон Fe3+ є … та на
аніон SO4 2- є … .
Добудьте за до реакції обміну натрій
силікат і барій хлорид і доведіть наявність силікат-
аніонів і катіонів Барію.
Які ознаки цих реакцій?
Складіть рівняння реакцій в молекулярному та
йонному виглядах.
Зробіть висновок:
Якісним реактивом на катіон Ba2+ є … та на аніон
SiO3 2- є … .
г\моль
моль
дм3\моль
моль
дм3
моль
Молекулярная формула изомерных углеводородов -
Коль в молекуле изомера А все длины связей равны, то данное вещество циклогексан:
CH2
/ \
CH2 CH2
| |
CH2 CH2
\ /
CH2
Изомер Б содержит один четвертичный этом углерода и не образовывает цис- и транс-изомеры, то данное соединение имеет следующую структурную формулу:
CH3
I
CH2=C-CH2-CH3 - 2-метилбутен-1
Так как вещество В образовывает цис- и транс-изомеры, а также содержит три первичных атома углерода и один первичный, то его структурная формула выглядит следующим образом:
CH3
I
CH3-C=CH2-CH3 - 2-метилбутен-2
Объяснение:
Реакционная смесь движется в режиме идеального вытеснения, если скорости всех элементов смеси в произвольном сечении реактора равны между собой (поршневой режим), т. е. отсутствует осевое перемешивание, а радиальное перемешивание считается идеальным.
Уравнение материального баланса для компонента А смеси записывается для элементарного участка реактора и имеет вид

Математическая модель процесса в реакторе идеального вытеснения имеет вид

Если объемный расход реакционной смеси V0 — величина постоянная, тогда уравнение (3.5) можно преобразовать к следующему выражению:

Дифференциальное уравнение (3.6) с начальным условием для некоторых видов простых химических реакций имеет аналитическое решение. В табл. 3.2 представлены решения уравнения (3.6) как расчетные формулы для реактора, работающего в режиме идеального вытеснения при проведении в нем простых и сложных химических реакций, когда реакционный объем остается в процессе реакции постоянным