В органических соединениях углерод должен быть четырехвалентный т.е. от него должно отходить 4 связи. Например возьмем такую цепочку С-С-С. Первый углерод связан 1 связью со вторым углеродом, а 3 связи нужно чем-то занять - это делают водороды. Значит возле первого углерода будет 3 атома Н. Второй углерод связан 2 связями с первым углеродом и с третьим углеродом, а 2 связи нужно чем-то занять. Чем? Правильно 2 водородами. Значит возле 2 атома углерода 2 водорода. Если случится, что ко второму углероду еще углерод присоединится, то на водород останется только 1 связь. Ну, а если еще 1 ко второму углероду, то водороду будет стать некуда.
Второй углерод связан 2 связями с первым углеродом и с третьим углеродом, а 2 связи нужно чем-то занять. Чем? Правильно 2 водородами. Значит возле 2 атома углерода 2 водорода. Если случится, что ко второму углероду еще углерод присоединится, то на водород останется только 1 связь. Ну, а если еще 1 ко второму углероду, то водороду будет стать некуда.
Связь между энергией активации ТАК и энтальпией активации.
Пересчет по уравнению Киркгоффа.
Энергия активации ТАК относится к реакции превращения реагентов в
активированный комплекс при абсолютном нуле температуры. При этой температуре
изменения энтальпии и внутренней энергии равны
0 0
0 0 ; 0 H UE T ТАК K
T
R
R
(1)
Энтальпия активации относится к той же самой реакции, но при более высокой
температуре Т. Пересчитаем энтальпию от температуры Т=0 К к температуре Т с
закона Кирхгоффа. Будем считать, что все участники реакции – идеальные газы,
тогда
0
0 0
0
T T
T ТАК p ТАК V
T
ТАК V
Н E c dT E c R d
E c dT RT
(2)
p
с равна разности теплоемкостей продуктов и реагентов. Для каждой теплоемкости
выполняется равенство
p V с c (3)
Активированный комплекс образуется из двух частиц-реагентов, поэтому
p V с c (4)
Соотношение (4) использовано в (2).
Допустим теперь, что для поступательных и вращательных степеней свободы
активированного комплекса и реагентов выполняется закон равнораспределения, т.е.
каждой степени свободы соответствует теплоемкость при любой температуре
1
2 Vс R
Теплоемкости, соответствующие колебательным степеням свободы, будем считать
близкими к нулю и не будем их учитывать в расчете. Тогда появляется возможность
рассчитать интеграл в формуле (2). Допустим, что активированный комплекс
и оба реагента – нелинейные частицы. Тогда у каждой будет по три поступательных и три
вращательных степени свободы. Получаем